HRP-N3 - серия источников питания с максимальной пиковой мощностью в 350% от MEAN WELL
РадиоЛоцман - Все об электронике

Ученые создали материал для энергонезависимой памяти на основе графеновых квантовых точек

Специалисты Института физики полупроводников им. А. В. Ржанова СО РАН, Института биохимической физики им. Н. М. Эмануэля РАН, Объединенного института ядерных исследований вместе с коллегами из других научных организаций России, Польши и Франции сформировали графеновые островки (квантовые точки) сверхмалого размера ― единицы нанометров, ― заключенные в непроводящую матрицу. Исследователи добились этого с помощью «бомбардировки» тонких пленок фторированного графена ионами ксенона. Полученные структуры могут стать активными элементами наноэлектронных приборов, функционирующих при комнатной температуре.

Сравнительное тестирование аккумуляторов EVE Energy и Samsung типоразмера 18650

Подготовка к началу измерений электрофизических характеристик образца
Подготовка к началу измерений электрофизических характеристик образца.

Квантовая точка ― ее иногда называют искусственным атомом ― частица полупроводника, в которой электроны находятся в потенциальной яме, то есть «заперты» и не могут свободно двигаться по всему кристаллу. Применение квантовых точек варьируется от использования в качестве флуоресцирующих меток в медицинских и биологических работах до создания одноэлектронных транзисторов и логических элементов квантового компьютера. Наноэлектронные (квантовые) устройства чувствительны к влиянию внешних условий и для корректной работы часто требуют охлаждения до температур близких к абсолютному нулю. Однако характеристики графена позволяют создавать наноэлектронные приборы, действующие в привычных нам условиях.

«Обычно, чтобы получить в графене квантовые точки, его “нарезают” на маленькие фрагменты, но, тогда края последних взаимодействуют с воздухом, окисляются. Это приводит к нестабильности свойств материалов на основе таких квантовых точек: в частности, к уменьшению электропроводности или подвижности носителей заряда. Возникает противоречие: нужны миниатюрные квантовые точки, но у них будет много краевых состояний, которые изменят (ухудшат) их параметры. В нашей работе мы формировали графеновые квантовые точки внутри матрицы фторографена (FG, диэлектрика на основе графена). Для этого мы облучали пленки фторографена быстрыми ионами ксенона. Создаваемые в результате облучения наноостровки графена оказываются встроенными во фторированную матрицу, у них нет оборванных связей и нет проблем с появлением краевых состояний», ― объясняет научный сотрудник Института физики полупроводников им. А. В. Ржанова СО РАН кандидат физико-математических наук Надежда Александровна Небогатикова.

Научный сотрудник Института физики полупроводников им. А. В. Ржанова СО РАН кандидат физико-математических наук Надежда Небогатикова
Научный сотрудник Института физики полупроводников им. А. В. Ржанова СО РАН
кандидат физико-математических наук Надежда Небогатикова.

Облучение высокоэнергетичными ионами ксенона с энергиями от 26 до 167 МэВ происходило в лаборатории ядерных реакций им. Г.Н. Флерова ОИЯИ. Благодаря кратковременному и мощному выделению тепла во время пролета иона, материал фторграфеновой матрицы локально расширялся и восстанавливался до графена вблизи треков (траекторий) ионов. Исследовательская группа предложила модель того, как происходил этот процесс.

«По-видимому, облучение разрушает отдельные частицы фторированного графена, из которого состоят пленки, приводя к формированию небольших (20-40 нанометров в диаметре) гранул с квантовыми точками. Интересно, что затем гранулы “слипаются” в более крупные сферические образования. Мы не ожидали увидеть подобный процесс, но пронаблюдали его в эксперименте и подтвердили при помощи моделирования», ― комментирует Надежда Небогатикова.

Облученный образец фторграфена на кремниевой подложке
Облученный образец фторграфена на кремниевой подложке.

Одно из направлений развития подхода, предложенного в работе, – разработка материалов с заранее заданными электрическими параметрами за счет управления расстояниями между квантовыми точками и формирование из них определенного рисунка. По сути подобные материалы ― основа для создания гибких электронных устройств или карт памяти.

«Наноструктурирование пленок фторированного графена значительно расширяет возможные приложения последнего. Например, мы создали двуслойные структуры, состоящие из фторграфена, нанесенного на гибкую подложку из поливинилового спирта. Степень фторирования графена до облучения была такой, что он практически не проводил электрический ток. Однако после облучения и наноструктурирования за счет формирования электрически активных квантовых точек, мы увидели улучшение параметров резистивных переключений для наших структур на несколько порядков», ― отмечает ведущий научный сотрудник ИФП СО РАН доктор физико-математических наук Ирина Вениаминовна Антонова.

Ведущий научный сотрудник ИФП СО РАН доктор физико-математических наук Ирина Антонова
Ведущий научный сотрудник ИФП СО РАН доктор физико-математических наук
Ирина Антонова.

Эффект резистивных переключений используется при разработке энергонезависимой памяти на основе мемристоров. Ее характеристики: время хранения, скорость и плотность записи информации существенно превышают аналогичные параметры у традиционно используемых видов памяти.

Исследование выполнялось при поддержке Российского научного фонда (проект № 19-72-10046), Фонда президентских грантов (проект № SP-5416.2018.2) 

isp.nsc.ru

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя