HRP-N3 - серия источников питания с максимальной пиковой мощностью в 350% от MEAN WELL

Программа TINA-TI и моделирование электрических схем. Задатчик - измеритель - масштабатор тока 4-20 мА. Часть 2

Журнал Радиоежегодник. Выпуск 25

Сергей Скворцов

Продолжение цикла статей. Начало в «Радиоежегоднике» вып. 20 – 23

Сравнительное тестирование аккумуляторов EVE Energy и Samsung типоразмера 18650

(Часть 1)

Моделирование

Ни один из номиналов радиоэлементов на схеме не появился случайным образом. Особенно это касается номиналов резисторов. Их аналитический расчет достаточно громоздок, а с помощью доступных программ схемотехнического моделирования это занимает совсем немного времени. Я предпочитаю использовать программу TINA9-TI, которую можно рассматривать как своеобразный «схемотехнический калькулятор». Эта программа бесплатна, всегда под рукой, проста в освоении и не требовательна к ресурсам ПК. Моделирование, даже достаточно сложной схемы, не вызовет особых затруднений, если воспользоваться «Общими правилами моделирования» [4].

Начнем, как принято, с источника питания ОУ на микросхеме TL431. После «сборки» несложного фрагмента схемы воспользуемся функциями анализа:

Анализ -> Анализ постоянного тока -> Переходные характеристики постоянного тока…



Моделирование TL431 в программе TINA9-TI
Рисунок 6. Моделирование TL431 в программе TINA9-TI.

В открывшемся окне (Рисунок 6) установим диапазон изменения входного источника тока IS1 0 – 20 мА.  На графике результата анализа хорошо видно, что режимы стабилизации +5 В и опорного напряжения +2.49 В наступают уже при токе около 0.5 мА. Также выбор микросхемы TL431 обусловлен ее достаточным для нашей задачи максимальным током (до 100 мА) и допустимой рассеиваемой мощностью (до 625 мВт).

Моделирование работы операционных усилителей LM358
Рисунок 7. Моделирование работы операционных усилителей LM358.

Далее, к цепям питания подключим два ОУ на микросхеме LM358, которые выполняют функции усиления и нормализации измерительного сигнала (Рисунок 7). Нас будет интересовать вид характеристик преобразования; насколько они близки к требуемым. Вновь выполним:

Анализ -> Анализ постоянного тока -> Переходные характеристики постоянного тока…

Результат моделирования и характеристики преобразования наглядно представлены на графике результата анализа этой части схемы.

Поясню, что предварительно, в соответствии с рекомендациями из [4], выбор и расчет номиналов резисторов выполнялся на модели идеального ОУ. Результат анализа с использованием модели «реальной» микросхемы LM358 «честно» показывает ее несовершенство, связанное, в первую очередь, с ненулевым значением выходного напряжения при однополярном питании ОУ и также с влиянием напряжения смещения. Это привело к тому, что полученная характеристика преобразования для ОР1 (зеленая линия) имеет значительную погрешность для входных токов 0…4.5 мА. Частично этот недостаток можно устранить, применив известный схемотехнический прием: включим последовательно с выходом ОУ дополнительные диоды VD6 и VD7 (см. схему на Рисунке 5).

Повторим:

Анализ -> Анализ постоянного тока -> Переходные характеристики постоянного тока…

Удобно использовать возможность, имеющуюся в программе, увеличения фрагмента графика результата анализа. Тогда улучшение (график на Рисунке 8 справа) хорошо видно. 

Сравнение результатов анализа двух решений
Рисунок 8. Сравнение результатов анализа двух решений.

Вообще говоря, для нашей конструкции правильнее было бы использовать так называемые Rail-to-Rail ОУ, то есть, ОУ с диапазоном выходного напряжения практически совпадающим с напряжением питания. Кроме того, их отличает очень малый ток потребления и возможность работы при низком напряжении питания, например, при 2.5 В. Из имеющихся в библиотеке TINA9-TI моделей остановим свой выбор на микросхеме сдвоенного Rail-to-Rail ОУ LPV358 (Рисунки 9 и 10) и вновь проведем анализ:

Анализ -> Анализ постоянного тока -> Переходные характеристики постоянного тока…

Анализ работы ОУ после замены модели на LPV358
Рисунок 9. Анализ работы ОУ после замены модели на LPV358.

Увеличенные фрагменты графика результата анализа для ОУ LPV358
Рисунок 10. Увеличенные фрагменты графика результата анализа для ОУ LPV358.

Налицо практически идеальные характеристики. С другой стороны, как показал опыт предварительного макетирования и изготовления опытного образца устройства, использование недорогой и распространенной микросхемы LM358 дает вполне приемлемый результат.

Предвижу, что некоторые читатели скептически отнесутся к таким «гладким» графикам. И они будут совершенно правы. Поэтому я при помощи TINA9-TI обращу внимание на глубокий «овраг», который подстерегает тех, кто привык слепо повторять чужие схемы (Рисунок 11).

Фрагмент схемы
Рисунок 11. Фрагмент схемы.

На этом фрагменте схемы видно, что рядом с номиналом резисторов R7, R8, R14 появился символ «*». Это означает, что к этим элементам будет применена функция «свип-сигнала», другими словами, вариации или «качания» параметра. Нам это необходимо сделать, чтобы оценить влияние разброса номиналов этих резисторов на характеристику преобразования ОР1 (DA2.1 на Рисунке 5). Резисторы R7, R8, R14 выбраны не случайно, так как именно они, главным образом, и определяют вид характеристики.

Ниже я кратко процитирую статью [5], где была описана эта несложная процедура.

Щелкнув по выделенной иконке (Рисунок 12), можно переместить курсор мышки к нужному элементу схемы (вид курсора меняется после щелчка по иконке) и выделить его щелчком левой клавиши.

Иконка, позволяющая управлять значениями параметров
Рисунок 12. Иконка, позволяющая управлять значениями параметров.

Появляется диалоговое окно свойств элемента (Рисунок 13).

Диалоговое окно свойств резистора R7
Рисунок 13. Диалоговое окно свойств резистора R7.

Выбранный параметр, в данном случае сопротивление резистора R7, будет изменяться в диапазоне между начальными и конечными значениями. Отмеченная в диалоговом окне кнопка «…» или «Выбрать…» позволяет вывести новое диалоговое окно Контроль объекта выделения, где устанавливаются эти значения. Здесь мы установим начальное и конечное значение сопротивления R7 из расчета 620 кОм ±5% (Рисунок 14). Аналогичную процедуру мы выполним и для резисторов R8 и R14. Затем вновь выбираем:

Анализ -> Анализ постоянного тока -> Переходные характеристики постоянного тока…

Диалоговое окно «качания» параметра резистора R7
Рисунок 14. Диалоговое окно «качания» параметра резистора R7.

Так как в диалоговом окне Контроль объекта выделения (см. Рисунок 14) значение Количество случаев было указано равным 3, то для трех «качаемых» резисторов мы получили семейство из 33=27 графиков (Рисунок 15). На увеличенных фрагментах графика результата анализа (Рисунок 16) хорошо виден существенный разброс характеристик как в начальной точке 4 мА, так и в конце диапазона – 20 мА.

Анализ работы ОУ DA2.1 в режиме «качания» параметров R7, R8, R14 ±5%
Рисунок 15. Анализ работы ОУ DA2.1 в режиме «качания» параметров R7, R8, R14 ±5%.

Увеличенные фрагменты графика результата анализа для «качания» параметров ±5%
Рисунок 16. Увеличенные фрагменты графика результата анализа для «качания» параметров ±5%.

В заключение выполнялся подбор номиналов резисторов делителя масштабатора: R28, R30, R32, R34, R36, R38 (Рисунок 17). Их аналитический расчет также достаточно громоздок, а с помощью «схемотехнического калькулятора» TINA9-TI это заняло совсем немного времени.

Подбор номиналов резисторов делителя масштабатора
Рисунок 17. Подбор номиналов резисторов делителя масштабатора.

Мои наблюдения показывают, что начинающие освоение программ схемотехнического моделирования обычно используют инструменты, к которым они привыкли в практической работе: осциллограф и мультиметр. Уверен, что приведенные в этой статье наглядные графики результатов схемного анализа, побудят многих преодолеть этот психологический стереотип и шире использовать возможности специализированных программ.

Настройка и калибровка

Рассматривая графики на Рисунках 15 и 16, можно сделать однозначный вывод: без процедуры настройки устройства нам не обойтись. Чтобы ее упростить, советую резисторы (см. схему на Рисунке 5) R1, R8, R11, R14, R15 приобрести или подобрать с точностью не хуже ±1%. В этом случае достаточно будет только уточнить номинал резистора R7. Это делается следующим образом:

  1. Тумблер SA1 перевести в положение «ЗАДАНИЕ».
     
  2. К щупам «+ ЗАДАТЧИК –» с соблюдением полярности подключить источник постоянного тока напряжением 12…24 В (ток не менее 50 мА) и последовательно с ним миллиамперметр (на измерительном пределе 20 мА).
     
  3. Включить источник питания и, регулируя потенциометры R13 «ГРУБО» и R9 «ТОЧНО», установить ток задатчика 5.60 мА (это 10% от шкалы 4–20 мА).
     
  4. Подбором резистора R7 установить напряжение в контрольной точке КТ1 равным 200±2 мВ (это 10% от шкалы 0–2 В).

Далее необходимо установить ток задатчика 20.00 мА и убедиться, что напряжение в контрольных точках КТ1 и КТ2 равно 2.00±0.08 В. Для обеспечения приемлемой точности нашего устройства для калибровки необходимо использовать приборы с классом точности не ниже 0.2.

Окончательная калибровка устройства проводится по показаниям цифровой измерительной панели при токе задатчика 20.00 мА:

  1. Тумблер SA2 перевести в положение «4–20 мА», а переключатель SA3 – в положение «20.00».
     
  2. Вращением подстроечного резистора R18 установить показания на индикаторе «19.99».
     
  3. Тумблер SA2 перевести в положение «МАСШТАБ.».
     
  4. Вращением подстроечного резистора R26 установить показания на индикаторе «19.99».
     
  5. Установить переключатель SA3 в положение «16.00».
     
  6. Вращением подстроечного резистора R25 установить показания на индикаторе «16.00».
     
  7. Повторить п.п. 5 и 6 для положений SA3: «10.00», «6.30», «5.00», «4.00», «2.50» и вращением построечных резисторов R24–R20 установить соответствующие показания на индикаторе: «10.00», «6.30», «5.00», «4.00», «2.50» (в случае невозможности установить необходимые показания – подобрать номиналы резисторов R28, R30, R32, R34, R36, R38).

Затем необходимо убедиться, что погрешность показаний индикатора в середине диапазона (при токе задатчика 12.00 мА) и в начале (4.00 мА) не превышает допустимой. Опыт макетирования и изготовления опытного образца устройства показывает, что его общая погрешность определяется, в первую очередь, погрешностью цифровой измерительной панели. Существенных расхождений между результатами моделирования в TINA9-TI и практически полученными значениями не было.

Конструкция и детали

Фотография опытного образца прибора представлена на Рисунке 2. Печатная плата для него не разрабатывалась. Весь монтаж выполнен на нескольких макетных платах и размещен в подходящем корпусе, который был «доработан по месту напильником». Для лицевой панели и галетного переключателя SA3 использовались детали от неисправного цифрового мультиметра. Подстроечные резисторы можно использовать недорогие однооборотные, например, СП3-38. Постоянные резисторы – из недорогих, предпочтительнее использовать металлопленочные MF-0.25, они имеют сравнительно небольшой ТКС (температурный коэффициент сопротивления). К другим радиоэлементам особых требований не предъявляется.

Все работы по макетированию, монтажу, наладке и калибровке опытного образца устройства выполнил киповец с 40-летним профессиональным стажем М.А. Кирпиченко, которому я также благодарен за важные практические предложения. Отдельно отмечу большую помощь в подготовке статьи В.Н. Гололобова и советы В.Я. Володина.

Использованная литература и ссылки

    1. С. Скворцов. Задатчик тока 4-20 мА для наладки систем автоматизации. Радиоежегодник, 2013, выпуск 22, с. 315-323. https://www.rlocman.ru/book/book.html?di=148043
    2. Обсуждение: Задатчик тока 4-20 мА для наладки систем автоматизации. Форум РадиоЛоцман. https://www.rlocman.ru/forum/showthread.php?p=119805
    3. ИТП-11. Преобразователь аналоговых сигналов измерительный универсальный. Руководство по эксплуатации, 2011. http://www.owen.ru/uploads/re_itp-11_1249.pdf
    4. Марина и Сергей Амелины. Основные правила моделирования электронных устройств с использованием программ схемотехнического анализа. http://microcap-model.narod.ru/modelling.htm
    5. В.Н. Гололобов. Программа TINA-TI и моделирование электрических схем. Схема инкубатора. Радиоежегодник, 2013, выпуск 20, с. 343. https://www.rlocman.ru/book/book.html?di=146748 

Загрузки

  1. Файл моделирования LM358 - 4–20 mA.TSC (11 кБ).
     
  2. Программа TINA-TI версия 9.3.50.40 SF-TI, обозначенная как sloc243c (86.3 Мб), русифицирована и доступна для свободной загрузки со страницы http://www.ti.com/tool/Tina-TI
Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя