Поставки продукции Nuvoton по официальным каналам

Datasheet MCP6421, MCP6422, MCP6424 (Microchip) - 23

ПроизводительMicrochip
ОписаниеThe Microchip’s MCP6421/2/4 operational amplifiers (op amps) has low input bias current (1 pA, typical) and rail-to-rail input and output operation
Страниц / Страница46 / 23 — MCP6421/2/4. 6.0. PACKAGING INFORMATION. 6.1. Package Marking …
Формат / Размер файлаPDF / 3.9 Мб
Язык документаанглийский

MCP6421/2/4. 6.0. PACKAGING INFORMATION. 6.1. Package Marking Information. (MCP6421 only). XXNN. (MCP6422 only). Legend:. Note

MCP6421/2/4 6.0 PACKAGING INFORMATION 6.1 Package Marking Information (MCP6421 only) XXNN (MCP6422 only) Legend: Note

28 предложений от 16 поставщиков
Микросхема Операционный усилитель, MICROCHIP MCP6422-E/SN Operational Amplifier, Dual, 2 Amplifier, 90kHz, 0.05V/µs, 1.8V to 5.5V, SOIC, 8Pins
AllElco Electronics
Весь мир
MCP6422-E/SN
Microchip
от 16 ₽
ЧипСити
Россия
MCP6422-E/SN
Microchip
38 ₽
AiPCBA
Весь мир
MCP6422-E/SN
Microchip
123 ₽
Эиком
Россия
MCP6422-E/SN
Microchip
от 169 ₽
ХРОНИКИ РОСТА: причины увеличения доли китайских полупроводниковых компонентов

Модельный ряд для этого даташита

Текстовая версия документа

MCP6421/2/4 6.0 PACKAGING INFORMATION 6.1 Package Marking Information
5-Lead SC70
(MCP6421 only)
Example: DS25 5-Lead SOT-23
(MCP6421 only)
Example:
XXNN
3H25 8-Lead MSOP (3x3 mm)
(MCP6422 only)
Example 6422E 330256
Legend:
XX...X Customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week ‘01’) NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) e3
*
This package is Pb-free. The Pb-free JEDEC designator ( e3) can be found on the outer packaging for this package.
Note
: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.  2013 Microchip Technology Inc. DS20005165B-page 23 Document Outline Typical Application Package Types 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC electrical specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Test Circuits FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-4: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-5: Input Offset Voltage vs. Output Voltage. FIGURE 2-6: Input Offset Voltage vs. Power Supply Voltage. FIGURE 2-7: Input Noise Voltage Density vs. Common Mode Input Voltage. FIGURE 2-8: Input Noise Voltage Density vs. Frequency. FIGURE 2-9: CMRR, PSRR vs. Frequency. FIGURE 2-10: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-11: Input Bias, Offset Current vs. Ambient Temperature. FIGURE 2-12: Input Bias Current vs. Common Mode Input Voltage. FIGURE 2-13: Quiescent Current vs. Ambient Temperature. FIGURE 2-14: Quiescent Current vs. Power Supply Voltage. FIGURE 2-15: Quiescent Current vs. Common Mode Input Voltage. FIGURE 2-16: Quiescent Current vs. Common Mode Input Voltage. FIGURE 2-17: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-18: DC Open-Loop Gain vs. Ambient Temperature. FIGURE 2-19: DC Open-Loop Gain vs. Output Voltage Headroom. FIGURE 2-20: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-21: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-22: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-23: Output Voltage Swing vs. Frequency. FIGURE 2-24: Output Voltage Headroom vs. Output Current. FIGURE 2-25: Output Voltage Headroom vs. Output Current. FIGURE 2-26: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-27: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-28: Slew Rate vs. Ambient Temperature. FIGURE 2-29: Small Signal Non-Inverting Pulse Response. FIGURE 2-30: Small Signal Inverting Pulse Response. FIGURE 2-31: Large Signal Non-Inverting Pulse Response. FIGURE 2-32: Large Signal Inverting Pulse Response. FIGURE 2-33: The MCP6421/2/4 Device Shows No Phase Reversal. FIGURE 2-34: Closed Loop Output Impedance vs. Frequency. FIGURE 2-35: Measured Input Current vs. Input Voltage (below VSS). FIGURE 2-36: EMIRR vs. Frequency. FIGURE 2-37: EMIRR vs. RF Input Peak- to-Peak Voltage. FIGURE 2-38: Channel-to-Channel Separation vs. Frequency. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins (VSS, VDD) 4.0 Application Information 4.1 Rail-to-Rail Input FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. FIGURE 4-3: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-4: Output Resistor, RISO Stabilizes Large Capacitive Loads. FIGURE 4-5: Recommended RISO Values for Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-6: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-7: Example Guard Ring Layout for Inverting Gain. 4.7 Electromagnetic Interference Rejection Ratio (EMIRR) Definitions 4.8 Application Circuits FIGURE 4-8: CO Gas Sensor Circuit. FIGURE 4-9: Pressure Sensor Amplifier. FIGURE 4-10: Battery Current Sensing. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Trademarks Worldwide Sales and Service
ТМ Электроникс. Электронные компоненты и приборы. Скидки, кэшбэк и бесплатная доставка