Datasheet MCP6241, MCP6241R, MCP6241U, MCP62412, MCP62414 (Microchip) - 8 Производитель Microchip Описание MCP6241/1R/1U/2/4 family of operational amplifier (Op Amp) provides wide bandwidth for the quiescent current Страниц / Страница 38 / 8 — MCP6241/1R/1U/2/4. Note:. 1.E-02. 10m. 1.E-03. e (A 1.E-04. 100µ. ud it … Формат / Размер файла PDF / 684 Кб Язык документа английский
MCP6241/1R/1U/2/4. Note:. 1.E-02. 10m. 1.E-03. e (A 1.E-04. 100µ. ud it 1.E-05. 10µ. n 1.E-06. M 1.E-07. 100n. 1.E-08. 10n. rrent. +125°C. 1.E-09. +85°C
Скачать PDF
39 предложений от 26 поставщиков
Микросхема Операционный усилитель, MICROCHIP MCP6242-E/MS Operational Amplifier, Dual, 2 Amplifier, 550kHz, 0.3V/µs, 1.8V to 5.5V, MSOP, 8Pins
MCP6242T-E/SN Microchip от 62 ₽ КупитьMCP6242-E/P Microchip по запросу КупитьMCP6242T-E/P Microchip по запросу КупитьMCP6242-E/MS Microchip по запросу Купить
Модельный ряд для этого даташита Текстовая версия документа MCP6241/1R/1U/2/4 Note: Unless otherwise indicated, T ≈ A = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2, RL = 100 kΩ to VDD/2 and CL = 60 pF.1.E-02 ) 10m 1.E-03 1m e (A 1.E-04 100µ ud it 1.E-05 10µ n 1.E-06 ag 1µ M 1.E-07 100n 1.E-08 10n rrent +125°C 1.E-09 1n +85°C t Cu 1.E-10 100p +25°C 1.E-11 10p -40°C Inpu 1.E-12 1p -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Input Voltage (V) FIGURE 2-19: Measured Input Current vs. Input Voltage (below VSS). DS21882D-page 8 © 2008 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics 1.1 Test Circuits FIGURE 1-1: AC and DC Test Circuit for Most Non-Inverting Gain Conditions. FIGURE 1-2: AC and DC Test Circuit for Most Inverting Gain Conditions. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: PSRR, CMRR vs. Frequency. FIGURE 2-3: Input Bias Current at +85˚C. FIGURE 2-4: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-5: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-6: Input Bias Current at +125˚C. FIGURE 2-7: Input Noise Voltage Density vs. Frequency. FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 1.8V. FIGURE 2-9: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V. FIGURE 2-10: Input Offset Voltage Drift. FIGURE 2-11: Input Offset Voltage vs. Output Voltage. FIGURE 2-12: Output Short-Circuit Current vs. Ambient Temperature. FIGURE 2-13: Slew Rate vs. Ambient Temperature. FIGURE 2-14: Output Voltage Headroom vs. Output Current Magnitude. FIGURE 2-15: Maximum Output Voltage Swing vs. Frequency. FIGURE 2-16: Small-Signal, Non-Inverting Pulse Response. FIGURE 2-17: Large-Signal, Non-Inverting Pulse Response. FIGURE 2-18: Quiescent Current vs. Power Supply Voltage. FIGURE 2-19: Measured Input Current vs. Input Voltage (below VSS). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table for Single Op Amps TABLE 3-2: Pin Function Table for Dual and Quad Op Amps 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply (VSS and VDD) 3.4 Exposed Thermal Pad (EP) 4.0 Application infoRmation 4.1 Rail-to-Rail Inputs FIGURE 4-1: The MCP6241/1R/1U/2/4 Show No Phase Reversal. FIGURE 4-2: Simplified Analog Input ESD Structures. FIGURE 4-3: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-4: Output Resistor, RISO stabilizes large capacitive loads. FIGURE 4-5: Recommended RISO Values for Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-6: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-7: Example Guard Ring Layout for Inverting Gain. 4.7 Application Circuits FIGURE 4-8: Summing Amplifier Circuit. FIGURE 4-9: Effect of Parasitic Capacitance at the Input. 5.0 Design AIDS 5.1 SPICE Macro Model 5.2 Mindi™ Circuit Designer & Simulator 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information