Источники питания Keen Side

Datasheet MCP631, MCP632, MCP633, MCP634, MCP635, MCP639 (Microchip)

ПроизводительMicrochip
ОписаниеThe MCP63x family of operational amplifiers features high gain bandwidth product and high output short circuit current
Страниц / Страница60 / 1 — MCP631/2/3/4/5/9. 24 MHz, 2.5 mA Rail-to-Rail Output (RRO) Op Amps. …
Формат / Размер файлаPDF / 2.4 Мб
Язык документаанглийский

MCP631/2/3/4/5/9. 24 MHz, 2.5 mA Rail-to-Rail Output (RRO) Op Amps. Features:. Description:. Typical Application Circuit. MCP63X

Datasheet MCP631, MCP632, MCP633, MCP634, MCP635, MCP639 Microchip

10 предложений от 10 поставщиков
Микросхема Операционный усилитель, OP Amp Dual GP R-R O/P 5.5V 10Pin DFN EP T/R
AiPCBA
Весь мир
MCP635T-E/MF
Microchip
74 ₽
IC Home
Весь мир
MCP635T-E/MF
Microchip
89 ₽
Augswan
Весь мир
MCP635T-E/MF
Microchip
по запросу
MCP635T-E/MF
Microchip
по запросу

Модельный ряд для этого даташита

Текстовая версия документа

MCP631/2/3/4/5/9 24 MHz, 2.5 mA Rail-to-Rail Output (RRO) Op Amps Features: Description:
• Gain-Bandwidth Product: 24 MHz The Microchip Technology Inc. MCP631/2/3/4/5/9 • Slew Rate: 10 V/µs family of operational amplifiers features high gain • Noise: 10 nV/Hz at 1 MHz) bandwidth product (24 MHz, typical) and high output short-circuit current (70 mA, typical). Some also • Low Input Bias Current: 4 pA (typical) provide a Chip Select (CS) pin that supports a • Ease of Use: low-power mode of operation. These amplifiers are - Unity-Gain Stable optimized for high speed, low noise and distortion, - Rail-to-Rail Output single-supply operation with rail-to-rail output and an - Input Range including Negative Rail input that includes the negative rail. - No Phase Reversal This family is offered in single (MCP631), single with • Supply Voltage Range: +2.5V to +5.5V CS pin (MCP633), dual (MCP632), dual with two CS pins (MCP635), quad (MCP634) and quad with two • High Output Current: ±70 mA Chip Select pins (MCP639). All devices are fully • Supply Current: 2.5 mA/ch (typical) specified from -40°C to +125°C. • Low-Power Mode: 1 µA/ch • Smal Packages: SOT23-5, DFN
Typical Application Circuit
• Extended Temperature Range: -40°C to +125°C
MCP63X Typical Applications:
0A – 20 A +5V • Fast Low-Side Current Sensing 51.1 • Point-of-Load Control Loops + • Power Amplifier Control Loops VOUT - • Barcode Scanners 0.005 0V – 4V • Optical Detector Amplifier • Multi-Pole Active Filter 51.1 2.0 k
Design Aids:
• SPICE Macro Models • FilterLab® Software • Microchip Advanced Part Selector (MAPS) • Analog Demonstration and Evaluation Boards • Application Notes
High Gain-Bandwidth Op Amp Portfolio Model Family Channels/Package Gain-Bandwidth VOS (max.) IQ/Ch (typ.)
MCP621/1S/2/3/4/5/9 1, 2, 4 20 MHz 0.2 mV 2.5 mA MCP631/2/3/4/5/9 1, 2, 4 24 MHz 8.0 mV 2.5 mA MCP651/1S/2/3/4/5/9 1, 2, 4 50 MHz 0.2 mV 6.0 mA MCP660/1/2/3/4/5/9 1, 2, 3, 4 60 MHz 8.0 mV 6.0 mA  2009-2014 Microchip Technology Inc. DS20002197C-page 1 Document Outline 24 MHz, 2.5 mA Rail-to-Rail Output (RRO) Op Amps Features: Typical Applications: Design Aids: Description: Typical Application Circuit High Gain-Bandwidth Op Amp Portfolio Package Types 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications DC Electrial Specifications AC Electrical Specifications Digital Electrical Specifications Temperature Specifications 1.3 Timing Diagram FIGURE 1-1: Timing Diagram. 1.4 Test Circuits FIGURE 1-2: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves 2.1 DC Signal Inputs FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage vs. Power Supply Voltage with VCM = 0V. FIGURE 2-4: Input Offset Voltage vs. Output Voltage. FIGURE 2-5: Low-Input Common-Mode Voltage Headroom vs. Ambient Temperature. FIGURE 2-6: High-Input Common-Mode Voltage Headroom vs. Ambient Temperature. FIGURE 2-7: Input Offset Voltage vs. Common-Mode Voltage with VDD = 2.5V. FIGURE 2-8: Input Offset Voltage vs. Common-Mode Voltage with VDD = 5.5V. FIGURE 2-9: CMRR and PSRR vs. Ambient Temperature. FIGURE 2-10: DC Open-Loop Gain vs. Ambient Temperature. FIGURE 2-11: DC Open-Loop Gain vs. Load Resistance. FIGURE 2-12: Input Bias and Offset Currents vs. Ambient Temperature with VDD = 5.5V. FIGURE 2-13: Input Bias Current vs. Input Voltage (below VSS). FIGURE 2-14: Input Bias and Offset Currents vs. Common-Mode Input Voltage with TA = +85°C. FIGURE 2-15: Input Bias and Offset Currents vs. Common-Mode Input Voltage with TA = +125°C. 2.2 Other DC Voltages and Currents FIGURE 2-16: Output Voltage Headroom vs. Output Current. FIGURE 2-17: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-18: Output Short-Circuit Current vs. Power Supply Voltage. FIGURE 2-19: Supply Current vs. Power Supply Voltage. FIGURE 2-20: Supply Current vs. Common-Mode Input Voltage. 2.3 Frequency Response FIGURE 2-21: CMRR and PSRR vs. Frequency. FIGURE 2-22: Open-Loop Gain vs. Frequency. FIGURE 2-23: Gain-Bandwidth Product and Phase Margin vs. Ambient Temperature. FIGURE 2-24: Gain-Bandwidth Product and Phase Margin vs. Common-Mode Input Voltage. FIGURE 2-25: Gain-Bandwidth Product and Phase Margin vs. Output Voltage. FIGURE 2-26: Closed-Loop Output Impedance vs. Frequency. FIGURE 2-27: Gain Peaking vs. Normalized Capacitive Load. FIGURE 2-28: Channel-to-Channel Separation vs. Frequency. 2.4 Noise and Distortion FIGURE 2-29: Input Noise Voltage Density vs. Frequency. FIGURE 2-30: Input Noise Voltage Density vs. Input Common-Mode Voltage with f = 100 Hz. FIGURE 2-31: Input Noise Voltage Density vs. Input Common-Mode Voltage with f = 1 MHz. FIGURE 2-32: Input Noise vs. Time with 0.1 Hz Filter. FIGURE 2-33: THD+N vs. Frequency. 2.5 Time Response FIGURE 2-34: Non-Inverting Small Signal Step Response. FIGURE 2-35: Non-Inverting Large Signal Step Response. FIGURE 2-36: Inverting Small Signal Step Response. FIGURE 2-37: Inverting Large Signal Step Response. FIGURE 2-38: The MCP631/2/3/4/5/9 Family Shows No Input Phase Reversal With Overdrive. FIGURE 2-39: Slew Rate vs. Ambient Temperature. FIGURE 2-40: Maximum Output Voltage Swing vs. Frequency. 2.6 Chip Select Response FIGURE 2-41: CS Current vs. Power Supply Voltage. FIGURE 2-42: CS and Output Voltages vs. Time with VDD = 2.5V. FIGURE 2-43: CS and Output Voltages vs. Time with VDD = 5.5V. FIGURE 2-44: CS Hysteresis vs. Ambient Temperature. FIGURE 2-45: CS Turn-On Time vs. Ambient Temperature. FIGURE 2-46: CS Pull-Down Resistor (RPD) vs. Ambient Temperature. FIGURE 2-47: Quiescent Current in Shutdown vs. Power Supply Voltage. FIGURE 2-48: Output Leakage Current vs. Output Voltage. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 3.4 Chip Select Digital Input (CS) 3.5 Exposed Thermal Pad (EP) 4.0 Applications 4.1 Input FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. FIGURE 4-3: Unity-Gain Voltage Limitations for Linear Operation. 4.2 Rail-to-Rail Output FIGURE 4-4: Output Current. FIGURE 4-5: Diagram for Power Calculations. 4.3 Improving Stability FIGURE 4-6: Output Resistor, RISO, Stabilizes Large Capacitive Loads. FIGURE 4-7: Recommended RISO Values for Capacitive Loads. FIGURE 4-8: Amplifier with Parasitic Capacitance. FIGURE 4-9: Maximum Recommended RF vs. Gain. 4.4 MCP633, MCP635 and MCP639 Chip Select 4.5 Power Supply 4.6 High-Speed PCB Layout 4.7 Typical Applications FIGURE 4-10: Power Driver. FIGURE 4-11: Transimpedance Amplifier for an Optical Detector. FIGURE 4-12: H-Bridge Driver. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Trademarks Worldwide Sales and Service
ТМ Электроникс. Электронные компоненты и приборы. Скидки, кэшбэк и бесплатная доставка