Клеммы, реле, разъемы Degson со склада в России

Datasheet MCP4902, MCP4912, MCP4922 (Microchip) - 6

ПроизводительMicrochip
Описание8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface
Страниц / Страница48 / 6 — MCP4902/4912/4922. ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE …
Формат / Размер файлаPDF / 3.8 Мб
Язык документаанглийский

MCP4902/4912/4922. ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED). Electrical Specifications:. Parameters. Sym

MCP4902/4912/4922 ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED) Electrical Specifications: Parameters Sym

26 предложений от 16 поставщиков
Микросхема Преобразователь DA, IC,D/A CONVERTER,DUAL,12Bit,TSSOP,14Pin
727GS
Весь мир
MCP4922T-E/ST
Microchip
от 73 ₽
IC Home
Весь мир
MCP4922T-E/ST
Microchip
277 ₽
Кремний
Россия и страны СНГ
MCP4922T-E/ST
Microchip
по запросу
LifeElectronics
Россия
MCP4922T-EST
Microchip
по запросу
Новое семейство LED-драйверов XLC компании MEAN WELL с дополнительными возможностями диммирования

Модельный ряд для этого даташита

Текстовая версия документа

link to page 3
MCP4902/4912/4922 ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED) Electrical Specifications:
Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF. Typical values are at +125°C by characterization or simulation.
Parameters Sym Min Typ Max Units Conditions
Multiplying Mode fVREF — 450 — kHz VREF = 2.5V ±0.1 Vp-p, -3 dB Bandwidth Unbuffered, G = 1x fVREF — 400 — kHz VREF = 2.5V ±0.1 Vp-p, Unbuffered, G = 2x Multiplying Mode – Total THDVREF — — — dB VREF = 2.5V ±0.1Vp-p, Harmonic Distortion Frequency = 1 kHz
Output Amplifier
Output Swing VOUT — 0.01 to — V Accuracy is better than 1 LSb for VDD – 0.04 VOUT = 10 mV to (VDD – 40 mV) Phase Margin m — 66 — degrees Slew Rate SR — 0.55 — V/µs Short Circuit Current ISC — 17 — mA Settling Time tsettling — 4.5 — µs Within 1/2 LSb of final value from 1/4 to 3/4 full-scale range
Dynamic Performance (Note 2)
DAC to DAC Crosstalk — 10 — nV-s Major Code Transition — 45 — nV-s 1 LSb change around major carry Glitch (0111...1111 to 1000...0000) Digital Feedthrough — 10 — nV-s Analog Crosstalk — 10 — nV-s
Note 1:
Guaranteed monotonic by design over all codes.
2:
This parameter is ensured by design, and not 100% tested. DS22250A-page 6  2010 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics FIGURE 1-1: SPI Input Timing Data. 2.0 Typical Performance Curves FIGURE 2-1: DNL vs. Code (MCP4922). FIGURE 2-2: DNL vs. Code and Temperature (MCP4922). FIGURE 2-3: DNL vs. Code and VREF, Gain = 1 (MCP4922). FIGURE 2-4: Absolute DNL vs. Temperature (MCP4922). FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4922). FIGURE 2-6: INL vs. Code and Temperature (MCP4922). FIGURE 2-7: Absolute INL vs. Temperature (MCP4922). FIGURE 2-8: Absolute INL vs. VREF (MCP4922). FIGURE 2-9: INL vs. Code and VREF (MCP4922). FIGURE 2-10: INL vs. Code (MCP4922). FIGURE 2-11: DNL vs. Code and Temperature (MCP4912). FIGURE 2-12: INL vs. Code and Temperature (MCP4912). FIGURE 2-13: DNL vs. Code and Temperature (MCP4902). FIGURE 2-14: INL vs. Code and Temperature (MCP4902). FIGURE 2-15: IDD vs. Temperature and VDD. FIGURE 2-16: IDD Histogram (VDD = 2.7V). FIGURE 2-17: IDD Histogram (VDD = 5.0V). FIGURE 2-18: Hardware Shutdown Current vs. Ambient Temperature and VDD. FIGURE 2-19: Software Shutdown Current vs. Ambient Temperature and VDD. FIGURE 2-20: Offset Error vs. Ambient Temperature and VDD. FIGURE 2-21: Gain Error vs. Ambient Temperature and VDD. FIGURE 2-22: VIN High Threshold vs Ambient Temperature and VDD. FIGURE 2-23: VIN Low Threshold vs Ambient Temperature and VDD. FIGURE 2-24: Input Hysteresis vs. Ambient Temperature and VDD. FIGURE 2-25: VREF Input Impedance vs. Ambient Temperature and VDD. FIGURE 2-26: VOUT High Limit vs. Ambient Temperature and VDD. FIGURE 2-27: VOUT Low Limit vs. Ambient Temperature and VDD. FIGURE 2-28: IOUT High Short vs. Ambient Temperature and VDD. FIGURE 2-29: IOUT vs VOUT. Gain = 1x. FIGURE 2-30: VOUT Rise Time. FIGURE 2-31: VOUT Fall Time. FIGURE 2-32: VOUT Rise Time. FIGURE 2-33: VOUT Rise Time. FIGURE 2-34: VOUT Rise Time Exit Shutdown. FIGURE 2-35: PSRR vs. Frequency. FIGURE 2-36: Multiplier Mode Bandwidth. FIGURE 2-37: -3 db Bandwidth vs. Worst Codes. FIGURE 2-38: Phase Shift. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Supply Voltage Pins (VDD, VSS) 3.2 Chip Select (CS) 3.3 Serial Clock Input (SCK) 3.4 Serial Data Input (SDI) 3.5 Latch DAC Input (LDAC) 3.6 Hardware Shutdown Input (SHDN) 3.7 Analog Outputs (VOUTA, VOUTB) 3.8 Voltage Reference Inputs (VREFA, VREFB) 4.0 General Overview TABLE 4-1: LSb of each device 4.1 DC Accuracy FIGURE 4-1: Example for INL Error. FIGURE 4-2: Example for DNL Accuracy. 4.2 Circuit Descriptions FIGURE 4-3: Typical Transient Response. FIGURE 4-4: Output Stage for Shutdown Mode. 5.0 Serial Interface 5.1 Overview 5.2 Write Command FIGURE 5-1: Write Command for MCP4922 (12-bit DAC). FIGURE 5-2: Write Command for MCP4912 (10-bit DAC). FIGURE 5-3: Write Command for MCP4902 (8-bit DAC). 6.0 Typical Applications 6.1 Digital Interface 6.2 Power Supply Considerations FIGURE 6-1: Typical Connection Diagram. 6.3 Layout Considerations 6.4 Single-Supply Operation 6.5 Bipolar Operation 6.6 Selectable Gain and Offset Bipolar Voltage Output Using a Dual DAC 6.7 Designing a Double-Precision DAC Using a Dual DAC 6.8 Building Programmable Current Source 6.9 Using Multiplier Mode 7.0 Development support 7.1 Evaluation and Demonstration Boards 8.0 Packaging Information 8.1 Package Marking Information Trademarks Worldwide Sales and Service
ТМ Электроникс. Электронные компоненты и приборы. Скидки, кэшбэк и бесплатная доставка