Altinkaya: турецкие корпуса для РЭА

Datasheet MCP4728 (Microchip)

ПроизводительMicrochip
Описание12-Bit, Quad Digital-to-Analog Converter with EEPROM Memory
Страниц / Страница68 / 1 — MCP4728. 12-Bit, Quad Digital-to-Analog Converter with EEPROM Memory. …
Формат / Размер файлаPDF / 3.0 Мб
Язык документаанглийский

MCP4728. 12-Bit, Quad Digital-to-Analog Converter with EEPROM Memory. Features. Description. Applications

Datasheet MCP4728 Microchip

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Модельный ряд для этого даташита

Текстовая версия документа

MCP4728 12-Bit, Quad Digital-to-Analog Converter with EEPROM Memory Features Description
• 12-Bit Voltage Output DAC with Four Buffered The MCP4728 device is a quad, 12-bit voltage output Outputs Digital-to-Analog Convertor (DAC) with nonvolatile • On-Board Nonvolatile Memory (EEPROM) for memory (EEPROM). Its on-board precision output DAC Codes and I2C™ Address Bits amplifier allows it to achieve rail-to-rail analog output • Internal or External Voltage Reference Selection swing. • Output Voltage Range: The DAC input codes, device configuration bits, and - Using Internal V I2C address bits are programmable to the nonvolatile REF (2.048V): memory (EEPROM) by using I2C serial interface 0.000V to 2.048V with Gain Setting = 1 commands. The nonvolatile memory feature enables 0.000V to 4.096V with Gain Setting = 2 the DAC device to hold the DAC input codes during power-off time, allowing the DAC outputs to be - Using External VREF (VDD): available immediately after power-up with the saved 0.000V to VDD settings. This feature is very useful when the DAC • ±0.2 Least Significant Bit (LSB) Differential device is used as a supporting device for other devices Nonlinearity (DNL) (typical) in the application’s network. • Fast Settling Time: 6 µs (typical) The MCP4728 device has a high precision internal • Normal or Power-Down Mode voltage reference (VREF = 2.048V). The user can select • Low Power Consumption the internal reference or external reference (VDD) for each channel individually. • Single-Supply Operation: 2.7V to 5.5V • I2C Interface: Each channel can be operated in Normal mode or Power-Down mode individually by setting the - Address bits: User Programmable to configuration register bits. In Power-Down mode, most EEPROM of the internal circuits in the powered down channel are - Standard (100 kbps), Fast (400 kbps) and turned off for power savings, and the output amplifier High Speed (HS) Mode (3.4 Mbps) can be configured to present a known low, medium, or • 10-Lead MSOP Package high resistance output load. • Extended Temperature Range: -40°C to +125°C The MCP4728 device includes a Power-on Reset (POR) circuit to ensure reliable power-up and an
Applications
on-board charge pump for the EEPROM programming voltage. • Set Point or Offset Adjustment • Sensor Calibration The MCP4728 has a two-wire I2C compatible serial interface for standard (100 kHz), fast (400 kHz), or high • Closed-Loop Servo Control speed (3.4 MHz) mode. • Low Power Portable Instrumentation The MCP4728 DAC is an ideal device for applications • PC Peripherals requiring design simplicity with high precision, and for • Programmable Voltage and Current Source applications requiring the DAC device settings to be • Industrial Process Control saved during power-off time. • Instrumentation The MCP4728 device is available in a 10-lead MSOP • Bias Voltage Adjustment for Power Amplifiers package and operates from a single 2.7V to 5.5V supply voltage. © 2010 Microchip Technology Inc. DS22187E-page 1 Document Outline 1.0 Electrical Characteristics FIGURE 1-1: I2C Bus Timing Data. FIGURE 1-2: LDAC Pin Timing vs. VOUT Update. 2.0 Typical Performance Curves FIGURE 2-1: INL vs. Code (TA = +25°C). FIGURE 2-2: INL vs. Code (TA = +25°C). FIGURE 2-3: INL vs. Code (TA = +25°C). FIGURE 2-4: DNL vs. Code (TA = +25°C). FIGURE 2-5: DNL vs. Code (TA = +25°C). FIGURE 2-6: DNL vs. Code (TA = +25°C). FIGURE 2-7: INL vs. Code (TA = +25°C). FIGURE 2-8: INL vs. Code (TA = +25°C). FIGURE 2-9: INL vs. Code and Temperature. FIGURE 2-10: DNL vs. Code (TA = +25°C). FIGURE 2-11: DNL vs. Code (TA = +25°C). FIGURE 2-12: DNL vs. Code and Temperature. FIGURE 2-13: INL vs. Code and Temperature. FIGURE 2-14: INL vs. Code and Temperature. FIGURE 2-15: INL vs. Code and Temperature. FIGURE 2-16: DNL vs. Code and Temperature. FIGURE 2-17: DNL vs. Code and Temperature. FIGURE 2-18: DNL vs. Code and Temperature. FIGURE 2-19: INL vs. Code and Temperature. FIGURE 2-20: Full Scale Error vs. Temperature (Code = FFFh, VREF = Internal). FIGURE 2-21: Full Scale Error vs. Temperature (Code = FFFh, VREF = VDD). FIGURE 2-22: DNL vs. Code and Temperature. FIGURE 2-23: Zero Scale Error vs. Temperature (Code = 000h, VREF = Internal). FIGURE 2-24: Offset Error (Zero Scale Error). FIGURE 2-25: Absolute DAC Output Error (VDD = 5.5V). FIGURE 2-26: Full Scale Settling Time (VREF = VDD, VDD = 5V, UDAC = 1, Code Change: 000h to FFFh). FIGURE 2-27: Half Scale Settling Time (VREF = VDD, VDD = 5V, UDAC = 1, Code Change: 000h to 7FFh). FIGURE 2-28: Full Scale Settling Time (VREF = Internal, VDD = 5V, UDAC = 1, Gain = x1, Code Change: 000h to FFFh). FIGURE 2-29: Full Scale Settling Time (VREF = VDD, VDD = 5V, UDAC = 1, Code Change: FFFh to 000h). FIGURE 2-30: Half Scale Settling Time (VREF = VDD, VDD = 5V, UDAC = 1, Code Change: 7FFh to 000h). FIGURE 2-31: Full Scale Settling Time (VREF = Internal, VDD = 5V, UDAC = 1, Gain = x1, Code Change: FFFh to 000h). FIGURE 2-32: Half Scale Settling Time (VREF = Internal, VDD = 5V, UDAC = 1, Gain = x1, Code Change: 000h to 7FFh). FIGURE 2-33: Exiting Power Down Mode (Code: FFFh, VREF = Internal, VDD = 5V, Gain = x1, for all Channels.). FIGURE 2-34: Entering Power Down Mode (Code: FFFh, VREF = Internal, VDD = 5V, Gain = x1, PD1= PD0 = 1, No External Load). FIGURE 2-35: Half Scale Settling Time (VREF = Internal, VDD = 5V, UDAC = 1, Gain = x1, Code Change: 7FFh to 000h). FIGURE 2-36: Exiting Power Down Mode (Code: FFFh, VREF = VDD, VDD = 5V, for all Channels). FIGURE 2-37: Entering Power Down Mode (Code: FFFh, VREF = VDD, VDD = 5V, PD1= PD0 = 1, No External Load). FIGURE 2-38: VOUT Time Delay when VREF changes from Internal Reference to VDD. FIGURE 2-39: VOUT Time Delay when VREF changes from VDD to Internal Reference. FIGURE 2-40: Channel Cross Talk (VREF = VDD, VDD = 5V). FIGURE 2-41: Code Change Glitch (VREF = External, VDD = 5V, No External Load), Code Change: 800h to 7FFh. FIGURE 2-42: Code Change Glitch (VREF = Internal, VDD = 5V, Gain = 1, No External Load), Code Change: 800h to 7FFh. FIGURE 2-43: VOUT vs. Resistive Load. FIGURE 2-44: IDD vs. Temperature (VREF = Vdd, VDD = 5V, Code = FFFh). FIGURE 2-45: IDD vs. Temperature (VREF = VDD, VDD = 2.7V, Code = FFFh). FIGURE 2-46: IDD vs. Temperature (VREF = VDD, All channels are in Normal Mode, Code = FFFh). FIGURE 2-47: IDD vs. Temperature (VREF = Internal, VREF = 5V, Code = FFFh). FIGURE 2-48: IDD vs. Temperature (VREF = Internal, VDD = 2.7V, Code = FFFh). FIGURE 2-49: IDD vs. Temperature (VREF = Internal , All Channels are in Normal Mode, Code = FFFh). FIGURE 2-50: IDD vs. Temperature (VREF = Internal , All Channels are in Powered Down). FIGURE 2-51: Source Current Capability (VREF = VDD, Code = FFFh). FIGURE 2-52: Sink Current Capability (VREF = VDD, Code = 000h). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Supply Voltage Pins (VDD, VSS) 3.2 Serial Clock Pin (SCL) 3.3 Serial Data Pin (SDA) 3.4 LDAC Pin 3.5 RDY/BSY Status Indicator Pin 3.6 Analog Output Voltage Pins (VOUT A, VOUT B, VOUT C, VOUT D) 4.0 Theory of Device Operation 4.1 Power-on Reset (POR) 4.2 Reset Conditions 4.3 Output Amplifier 4.4 DAC Input Registers and Non-Volatile EEPROM Memory TABLE 4-1: Input Register MAP (Volatile) TABLE 4-2: EEPROM Memory MAP and FACTORY DEFAULT Settings TABLE 4-3: Configuration Bits 4.5 Voltage Reference 4.6 LSB Size TABLE 4-4: LSB SIZES (example) 4.7 DAC Output Voltage 4.8 Output Voltage Update TABLE 4-5: LDAC and UDAC conditions Vs. Output Update 4.9 DAC Input Code Vs. DAC Analog Output TABLE 4-6: DAC Input Code Vs. Analog Output (VOUT) 4.10 Normal and Power-Down Modes TABLE 4-7: Power-down bits FIGURE 4-1: Output Stage for Power-Down Mode. 5.0 I2C Serial Interface Communications 5.1 Overview of I2C Serial Interface Communications 5.2 I2C BUS CHARACTERISTICS FIGURE 5-1: Data Transfer Sequence On The Serial Bus. 5.3 MCP4728 Device Addressing FIGURE 5-2: Device Addressing. 5.4 I2C General Call Commands FIGURE 5-3: General Call Reset. FIGURE 5-4: General Call Wake-Up. FIGURE 5-5: General Call Software Update. FIGURE 5-6: General Call Read I2C Address. 5.5 Writing and Reading Registers and EEPROM 5.6 Write Commands for DAC Registers and EEPROM TABLE 5-1: Write Command Types TABLE 5-2: DAC Channel Selection Bits for Sequential Write Command FIGURE 5-7: Fast Write Command: Write DAC Input Registers Sequentially from Channel A to D. FIGURE 5-8: Multi-Write Command: Write Multiple DAC Input Registers. FIGURE 5-9: Sequential Write Command: Write DAC Input Registers and EEPROM Sequentially from Starting Channel to Channel D. The sequential input register starts with the "Starting Channel" and ends at Channel D. For example, if DAC1:DAC0 = 00, then i... FIGURE 5-10: Single Write Command: Write to a Single DAC Input Register and EEPROM. FIGURE 5-11: Write Command: Write I2C Address Bits to the DAC Registers and EEPROM. FIGURE 5-12: Write Command: Write Voltage Reference Selection Bit (VREF) to the DAC Input Registers. FIGURE 5-13: Write Command: Write Power-Down Selection Bits (PD1, PD0) to the DAC Input Registers. See Table 4-7 for the power-down bit setting. FIGURE 5-14: Write Command: Write Gain Selection Bit (GX) to the DAC Input Registers. FIGURE 5-15: Read Command and Device Outputs. 6.0 Terminology 6.1 Resolution 6.2 Least Significant Bit (LSB) 6.3 Integral Nonlinearity (INL) FIGURE 6-1: INL Accuracy. 6.4 Differential Nonlinearity (DNL) FIGURE 6-2: DNL Accuracy. 6.5 Offset Error FIGURE 6-3: Offset Error. 6.6 Gain Error 6.7 Full Scale Error (FSE) FIGURE 6-4: Gain Error and Full Scale Error. 6.8 Gain Error Drift 6.9 Offset Error Drift 6.10 Settling Time 6.11 Major-Code Transition Glitch 6.12 Digital Feedthrough 6.13 Analog Crosstalk 6.14 DAC-to-DAC Crosstalk 6.15 Power-Supply Rejection Ratio (PSRR) 7.0 Typical Applications 7.1 Connecting to I2C BUS Using Pull-Up Resistors FIGURE 7-1: Example of the MCP4728 Device Connection. FIGURE 7-2: I2C Bus Connection Test. 7.2 Layout Considerations 7.3 Power Supply Considerations 7.4 Using Power Saving Feature 7.5 Using Nonvolatile EEPROM Memory 7.6 Application Examples TABLE 7-1: Example: Setting Vout of each channel FIGURE 7-3: Using the MCP4728 for Set Point or Threshold Calibration. FIGURE 7-4: Sequential Write Command for Setting Test Points in Figure 7-3. FIGURE 7-5: Example of Writing Fast Write Command for Various VOUT. VREF = VDD For All Channels. 8.0 Development Support 8.1 Evaluation & Demonstration Boards FIGURE 8-1: MCP4728 Evaluation Board. FIGURE 8-2: Setup for the MCP4728 Evaluation Board with PICkit™ Serial Analyzer. FIGURE 8-3: Example of PICkit™ Serial User Interface. 9.0 Packaging Information 9.1 Package Marking Information Corporate Office Atlanta Boston Chicago Cleveland Fax: 216-447-0643 Dallas Detroit Kokomo Toronto Fax: 852-2401-3431 Australia - Sydney China - Beijing China - Shanghai India - Bangalore Korea - Daegu Korea - Seoul Singapore Taiwan - Taipei Fax: 43-7242-2244-393 Denmark - Copenhagen France - Paris Germany - Munich Italy - Milan Spain - Madrid UK - Wokingham Worldwide Sales and Service Trademarks Worldwide Sales
Электронные компоненты. Бесплатная доставка по России