HRP-N3 - серия источников питания с максимальной пиковой мощностью в 350% от MEAN WELL

Искусство схемотехники. Часть 12 - Усилитель низкой частоты на транзисторах. Схема № 2

Избранные главы из книги С. А. Гаврилова «Искусство схемотехники. Просто о сложном».

Продолжение

Начало читайте здесь:

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Часть 1 – Транзисторы и их модели
Часть 2 – Стабилизация режима
Часть 3 – Вопросы из практики
Часть 4 – Что влияет на стабильность
Часть 5 – Самостабилизирующиеся схемы
Часть 6 - Стабилизация сигнальных параметров
Часть 7 - Измерительные схемы
Часть 8 - Диапазон уровней
Часть 9 - Вопросы из практики
Часть 10 - Усилители низкой частоты
Часть 11 - Усилитель низкой частоты на транзисторах. Схема № 1

Заказать книгу можно в интернет-магазине издательства


Усилитель низкой частоты на транзисторах

Схема № 2

Схема второго нашего усилителя значительно сложнее, но зато позволяет получить и более качественной звучание. Достигнуто это за счет более совершенной схемотехники, большего коэффициента усиления усилителя (и, следовательно, более глубокой обратной связи), а также возможностью регулировать начальное смещение транзисторов выходного каскада.

Схема нового варианта усилителя приведена на рис. 11.20. Этот усилитель, в отличие от своего предшественника, питается от двухполярного источника напряжения.

Принципиальная схема УНЧ на транзисторах с улучшенным качеством звучания 
Рис. 11.20. Принципиальная схема УНЧ на транзисторах с улучшенным качеством звучания

  Примечание.
Чтобы избежать в дальнейшем путаницы, будем считать напряжением питания этого усилителя напряжение каждой половины источника, а не их общую сумму.

Входной каскад усилителя на транзисторах VT1–VT3 образует т. н. дифференциальный усилитель. Транзистор VT2 в дифференциальном усилителе является источником тока (довольно часто в дифференциальных усилителях в качестве источника тока ставят обычный резистор достаточно большого номинала). А транзисторы VT1 и VT3 образуют два пути, по которым ток из источника уходит в нагрузку.

Если ток в цепи одного транзистора увеличится, то ток в цепи другого транзистора уменьшится на точно такую же величину – источник тока поддерживает сумму токов обоих транзисторов постоянной.

В итоге транзисторы дифференциального усилителя образуют почти «идеальное» устройство сравнения, что важно для качественной работы обратной связи. На базу одного транзистора подается усиливаемый сигнал, на базу другого – сигнал обратной связи через делитель напряжения на резисторах R6, R8.

Противофазный сигнал «расхождения» выделяется на резисторах R4 и R5, и поступает на две цепочки усиления:

  • транзистор VT7;
  • транзисторы VT4–VT6.

  Примечание.
Эти три транзистора образуют «токовое зеркало», обладающее интересным свойством – ток, проходящий через транзистор VT6, в точности равен току, проходящему через транзистор VT5.

Когда сигнал рассогласования отсутствует, токи обоих цепочек, т. е. транзисторов VT7 и VT6, равны, и напряжение в точке соединения их коллекторов (в нашей схеме такой точкой можно считать транзистор VT8) в точности равно нулю.

При появлении сигнала рассогласования токи транзисторов становятся разными, и напряжение в точке соединения становится больше или меньше нуля. Это напряжение усиливается составным эмиттерным повторителем, собранным на комплементарных парах VT9, VT10 и VT11, VT12, и поступает на АС – это выходной сигнал усилителя.

Транзистор VT8 используется для регулировки т. н. тока «покоя» выходного каскада. Когда движок подстроечного резистора R14 находится в верхнем по схеме положении, транзистор VT8 полностью открыт. При этом падение напряжение на нем близко к нулю. Если же перемещать движок резистора в нижнее положение, падение напряжения на транзисторе VT8 будет увеличиваться. А это равносильно внесению сигнала смещения в базы транзисторов выходного эмиттерного повторителя. Происходит смещение режима их работы от класса С до класса В, а в принципе – и до класса А. Это, как мы уже знаем, один из способов улучшения качества звука – не следует полагаться в этом только на действие обратной связи.

Плата. Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 50×47.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать здесь. Работу усилителя смотрим на ролике. Внешний вид усилителя приведен на рис. 11.21.

Внешний вид усилителя с улучшенным качеством звучания 
Рис. 11.21. Внешний вид усилителя с улучшенным качеством звучания

Аналоги и элементная база. При отсутствии необходимых деталей транзисторы VT1, VT3 можно заменить любыми малошумящими с допустимым током не менее 100 мА, допустимым напряжением не ниже напряжения питания усилителя и как можно большим коэффициентом усиления.

  Совет.
Для качественной работы усилителя важно, чтобы характеристики этих транзисторов были максимально идентичны. Так что обязательно приобретайте сразу пару транзисторов, а не собирайте их «с бору по сосенке». Приобретенная пара, как правило, оказывается из одной партии, так что есть надежда получить достаточное приближение к идеалу.

Специально для таких схем промышленностью выпускаются транзисторные сборки, представляющие собой пару транзисторов в одном корпусе с максимально подобными характеристиками – это был бы идеальный вариант.

Транзисторы VT9 и VT10 обязательно должны быть комплементарными, также как и VT11, и VT12. Они должны быть рассчитаны на напряжение не менее удвоенного напряжения питания усилителя. Не забыли, уважаемый радиолюбитель, что усилитель питается от двухполярного источника напряжения?

Для зарубежных аналогов комплементарые пары обычно указываются в документации на транзистор, для отечественных приборов – придется попотеть в Инете! Транзисторы выходного каскада VT11, VT12 дополнительно должны выдерживать ток, не меньший:

Iв = U / R, А,

где

U – напряжение питания усилителя,
R – сопротивление АС.

  Примечание.
Также транзисторы выходного каскада должны иметь допустимую рассеиваемую мощность не менее выделяемой. Формула для ее расчета была приведена в расчете радиаторов, но в качестве U нужно использовать удвоенное напряжение питания усилителя.

Для транзисторов VT9, VT10 допустимый ток должен быть не менее:

Iп = Iв / B, А,

где

Iв – максимальный ток выходных транзисторов;
B – коэффициент усиления выходных транзисторов.

Обратите внимание, что в документации на мощные транзисторы иногда приводятся два коэффициента усиления – один для режима усиления «малого сигнала», другой – для схемы с ОЭ. Вам нужен для расчета не тот, который для «малого сигнала». Обратите внимание также на особенность транзисторов КТ972/КТ973 – их коэффициент усиления составляет более 750.

Найденный вами аналог должен обладать не меньшим коэффициентом усиления – это существенно для данной схемы. Остальные транзисторы должны иметь допустимое напряжение не менее удвоенного напряжения питания усилителя и допустимый ток не мене 100 мА. Резисторы – любые с допустимой рассеиваемой мощностью не менее 0.125 Вт. Конденсаторы – электролитические, с емкостью не менее указанной и рабочим напряжением не менее напряжения питания усилителя.


Из книги С. А. Гаврилов. «Искусство схемотехники. Просто о сложном»

Продолжение читайте здесь

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя
Фрагменты обсуждения:Полный вариант обсуждения »
  • <<Рис. 11.20. Принципиальная схема УНЧ на транзисторах с улучшенным качеством звучания>> VT9 n-p-n структуры, поэтому вместо указанного КТ973А (p-n-p) следует поправить на КТ972А ( n-p-n). А то "потом сюрприз будет". :)
  • Спасибо, Anderalex! Обозначение транзистора исправили.