Пассивный тонкомпенсированный регулятор громкости с НЧ коррекцией. Часть 1

Журнал РАДИОЛОЦМАН, сентябрь 2017

Алексей Кузьминов, Москва

В статье приводятся принципиальные схемы, варианты разводки плат и фотографии готовых устройств – пассивных тонкомпенсированных регуляторов громкости (ТКРГ) с НЧ коррекцией. Применение двух резонансных контуров, настроенных на частоты 20 Гц и 20 кГц, позволило существенно приблизить АЧХ ТКРГ (также приведенные в статье) к линиям равной громкости, а использование первичной обмотки малогабаритных трансформаторов ТОТ-XX индуктивностью в единицы генри в контуре 20 Гц и индуктивности для поверхностного монтажа в контуре 20 кГц, не требующих утомительных ручных моточных работ, – получить недорогое миниатюрное устройство с простейшей схемой.

Тонкомпенсированные регуляторы громкости (ТКРГ), основанные на RC-цепочках [3], обеспечивают недостаточный диапазон регулировки громкости (не более 20 дБ) и, кроме того, их АЧХ существенно отличаются от кривых равной громкости (Флетчера-Мэнсона, Робинсона-Дадсона, ГОСТ Р ИСО 226-209 и т. п.). Для экономии места в статье график кривых равной громкости приведен в дополнительных материалах к статье, размещенных на сайте журнала.

ТКРГ, в котором АЧХ при регулировке громкости более приближены к кривым равной громкости, был опубликован в работе [4] (2003 г.). Этот регулятор основан на резонансном контуре, настроенном на частоту 20 Гц. Снижение добротности контура позволило получить кривые резонанса, которые, по мнению автора [4], проходят близко от кривых равной громкости. Однако в связи с тем, что частота резонанса FРЕЗ очень низкая (20 Гц), для создания подобного резонансного контура требуются очень большие номиналы емкости конденсатора и индуктивности дросселя (например, L = 3.2 Гн, C = 20 мкФ), что нетрудно подсчитать, учитывая, что FРЕЗ = 1/(2π√LC). В связи с этим автором [4] вместо индуктивности был использован так называемый гиратор, т.е. схема на ОУ, моделирующая индуктивность. Однако сложность схемы, масса дополнительных регулировок, недостаточная коррекция (менее 30 дБ), существенное отклонение АЧХ от кривых равной громкости в области ВЧ, а главное, применение дополнительного ОУ, который неизбежно будет «шуметь», вызывают сомнения в высоком качестве подобного регулятора громкости.

В более новой статье за 2015 г. [5] ее автор использовал тот же принцип (резонансный), но только подошел в прямом и переносном смысле «с другого конца». А именно, использовал резонансный контур, настроенный на частоту 20 кГц, т.е. частоту другого конца звукового диапазона частот.

В верхней части Рисунка 1 (исключая пунктирный прямоугольник) показана схема одноканального ТКРГ, описанного в [5]. Хотя, как видно из схемы, она проста до примитивности, существенное приближение АЧХ такого ТКРГ к кривым равной громкости, а также кардинально бóльший диапазон регулировки уровня звукового давления (до 60 дБ) в подобном устройстве послужили причиной, побудившей сделать такой регулятор и попробовать его в работе. Результаты такой пробы просто ошеломили автора: высокие частоты (ударные) явно прослушивались при самом малом уровне громкости, а средние частоты не затмевали ни НЧ, ни ВЧ. Что касается низких частот, то они также были почти в норме, если не считать самых низких частот (от 100 до 20 Гц). В этом диапазоне частот АЧХ этого регулятора, судя по таблицам из [5], имеют отклонения от кривых равной громкости, т.е. идут ниже: на 4 дБ на частоте 100 Гц, на 10 дБ на частоте 50 Гц и на 28 дБ на частоте 20 Гц. На слух этот недостаток воспринимается только при некотором положении регулятора громкости и при воспроизведении музыкальных файлов, в которых содержится достаточно большая доля низкочастотных составляющих (низкие басовые ноты, барабаны типа «бочка» и т. п.).

Пассивный тонкомпенсированный регулятор громкости с НЧ коррекцией
Рисунок 1. Упрощенная схема ТКРГ с НЧ коррекцией.

Автор задался вопросом: а нельзя ли, не трогая уровни СЧ и ВЧ, поднять исключительно уровень НЧ с помощью цепочки L2C4, показанной в пунктирном прямоугольнике на Рисунке 1? Причем, поскольку это резонансная цепь, то, настроив ее на частоту 20 Гц, можно существенным образом поднять самые низкие частоты и, таким образом, скорректировать вышеуказанный недостаток. Правда, очень большая индуктивность L2 в 3.2 Гн вызывала у автора сомнение. На первый взгляд, кажется, что это огромный дроссель весом в несколько килограмм. Однако автору попалась статья из старого журнала Радио за 1974 г. [2], в которой приводится схема регуляторов тембров, основанная также на резонансных контурах, один из которых настроен на частоту около 70 Гц. В этом регуляторе используется индуктивность 2.7 Гн. Для получения такой индуктивности автор [2] использовал ферритовое кольцо 2000 НМ К20×12×6 (μ = 2000, размер 20×12×6 мм), на которое было намотано 2000 витков, да еще проводом ПЭВ-2 0.08! Перспектива, конечно, не совсем приятная, однако современные ферритовые материалы имеют магнитную проницаемость μ кардинально большую, чем 2000. Например, у ферритов CF199 (Ferroxcube) и T38 (Epcos) μ = 10000, у X46 (Epcos) μ = 15000, поэтому количество витков можно существенно уменьшить.

Вначале автор попробовал кольцо из материала CF199 размером 20×10×10 мм с коэффициентом начальной (одновитковой) индуктивности AL = 12.4 мкГн/вит2 (Т2010CF199) производства компании Ferroxcube. Нетрудно подсчитать, что, если на такое кольцо намотать W = 500 витков, то можно получить индуктивность L = AL×W2 = 12.4 [мкГн/вит2]×5002[вит2] = 3.1 Гн. Для получения индуктивности 3.2 Гн на таком кольце было намотано 530 витков проводом ПЭПШО 0.08. Сопротивление обмотки составило 44 Ом.

В то же время существуют и менее габаритные кольца, чем кольцо Т2010CF199. Это кольца R16×9.6×6.3 (размер 16×9.6×6.3 мм) из новейшего (2016 г.) материала 3Е12 (TX16/9.6/6.3-3E12, μ = 12000, AL = 7×73 мкГн/вит2) производства компании Ferroxcube. При намотке 700 витков на таком кольце расчетом можно получить L = 7.73 [мкГн/вит2]×7002 [вит2] = 3.77 Гн (поскольку значение AL = 7.73 мкГн/вит2 в справочном листке приводится с погрешностью ±30%, то и полученная индуктивность имеет такую же погрешность). Реально на таком кольце было намотано 710 витков провода ПЭЛ-0.15. Измеренная индуктивность составила 3.1 Гн, сопротивление обмотки оказалось равным 14 Ом.

В качестве индуктивности L1 автор использовал достаточно распространенное кольцо Epcos R6.30×3.80×2.50 из материала N87 с магнитной проницаемостью μ = 2200 (B64290P0037X087) с AL = 0.56 мкГн/вит2. Индуктивность такого кольца легко подсчитать: L = AL×W2, где W – количество витков. Если, например, W = 100, то L = 5.6 мГн. Измерения RLC-метром показали, что для получения индуктивности около 8 мГн на кольцо R6.30×3.80×2.50 N87 требуется намотать 114…115 витков проводом ПЭЛ-0.12 или ПЭПШО-0.08.

Пробы с кольцами Т2010CF199, TX16/9.6/6.3-3E12 (в качестве L2) и B64290P0037X087 (L1) по схеме Рисунок 1 показали (см. далее), что НЧ-коррекция, добавленная в пунктирном прямоугольнике на Рисунке 1, существенным образом поднимает самые низкие частоты (вплоть до 20 Гц), однако несколько часов, потраченных автором на намотку колец L2, а также некоторое время (хоть и существенно меньшее), потраченное на намотку колец L1, заставили автора задаться вопросом: а нельзя ли вообще обойтись без моточных работ, купив что-либо готовое с соответствующей индуктивностью?

Что касается L1, то в продаже можно найти недорогую (около 20 руб. за штуку) готовую катушку индуктивности 8.2 мГн в корпусе для поверхностного монтажа размером 1812 (CM565050 822J). А вот дроссель индуктивностью в районе 3 Гн малого размера автору найти не удалось. В продаже можно найти достаточно дорогие дроссели с такой индуктивностью, но их размер (более 3×3×3 см) автора не устроил (да и цена тоже).

Однако автору попались интересные трансформаторы ТОТХХ (ТОТ – сокращение от Трансформатор Оконечный Транзисторный) размером всего 15×15×14 мм [6]. Индуктивность первичной обмотки трансформаторов TOT15 – TOT21 составляет 2.0 Гн с омическим сопротивлением в 624 Ом. У ТОТ22 – ТОТ28, соответственно, 3.8 Гн и 880 Ом. Вторичная обмотка этих трансформаторов занимает, как правило, не более 10% от объема всего трансформатора и, если ее не использовать, то в качестве дросселя L2 (Рисунок 1) вполне можно использовать первичную обмотку. Подобные трансформаторы уже достаточно давно (с конца 1980 годов) выпускаются нашей промышленностью (и продолжают выпускаться до сих пор). Цены на эти трансформаторы 1990-х годов выпуска не превышают 50-60 руб. за штуку. Кроме того, они достаточно распространены, а потому широкодоступны.

Автором были приобретены трансформаторы ТОТ27 и ТОТ28, а также (на пробу) ТОТ18.

Схема двухканального ТКРГ (Рисунок 2) на базе первичной обмотки ТОТ27 (LcA, LcB) и индуктивности 8.2 мГн для поверхностного монтажа CM565050 822J (L1A, L1B) достаточно проста и построена на основе схемы Рисунок 1.

Пассивный тонкомпенсированный регулятор громкости с НЧ коррекцией
Рисунок 1. Принципиальная схема двухканального ТКРГ на основе
трансформатора ТОТ27.

Оба входных сигнала (InA и InB) подаются на входной разъем XinR, представляющий собой 3-контактные цанговые штыри с шагом 2.54 мм (PLSM-3), a оба выходных сигнала (OutA и OutB) выведены на такой же разъем XoutR. Резистор регулировки громкости подключается к 8-контактному разъему XRgI, представляющему собой четыре двухрядных цанговых штыря с шагом 2.54 мм (PDLM-8). Резистор НЧ-коррекции (RcA-RcB) подключается к двум 3-контактным разъемам XRcIA и XRcIB (PSLM-3).

Номиналы резисторов Rc1A, Rc1B (10 кОм), соответствующие резистору R5 схемы на Рисунке 1, и номиналы резисторов RcA-RcB (также 10 кОм), соответствующие резистору R4, выбраны не случайно. Дело в том, что ни расчетами, ни моделированием эти значения не получить, поскольку их воздействие на АЧХ ТКРГ зависит от множества факторов, которые необходимо учитывать. Однако, как будет видно из дальнейшего изложения, значения номиналов этих резисторов очень просто получить опытным путем, сняв реальные АЧХ ТКРГ. Для этого автором вместо двух резисторов R4 и R5 (Рисунок 1) был установлен один переменный резистор номиналом 20 кОм (т.е. почти равный R1). Сняв АЧХ ТКРГ по схеме на Рисунке 1 при отключенной цепочке L2C4 и добившись аналогичного АЧХ вращением движка переменного резистора 20 кОм при включенной цепочке L2C4, автор получил, что при среднем положении этого резистора АЧХ в обоих случаях идентичны. Другими словами, при нижнем положении резистора R4 (Рисунок 1) АЧХ этого ТКРГ соответствует АЧХ при отключенной цепочке L2C4 (то есть, при отсутствии НЧ коррекции).

Сдвоенный переменный резистор регулировки громкости RgA-RgB соответствующим кабелем соединяется с разъемом XRgO, представляющим собой двухрядные 4-контактные цанговые гнезда с шагом 2.54 мм (PBDM2×4). Сдвоенный переменный резистор НЧ-коррекции RcA-RcB двумя кабелями соединяется с двумя 3-контактными разъемами XRcOA и XRcOB, представляющими собой два 3-контактных цанговых гнезда с шагом 2.54 мм (SIP-3).

Входной кабель, показанный в пунктирном прямоугольнике в верхней правой части схемы, представляет собой экранированный кабель с двумя 3-контактными разъемами на концах: Xin (стерео джек 3.5 мм) и XKinR (SIP-3). Разъем Xin вставляется в соответствующее гнездо, предназначенное для подключения наушников, телефона, планшета, плеера или компьютера. Если компьютер стационарный, то это гнездо салатового цвета, установленное на передней панели системного блока; в ноутбуке такое же гнездо установлено на задней стенке. Разъем XKinR кабеля подключается к входному разъему XinR платы ТКРГ. Сам кабель пропущен через резиновую втулку, установленную на корпусе усилителя (либо через пластмассовый кабельный ввод).

Выходной кабель (показанный в пунктирном прямоугольнике в нижней правой части схемы), также представляет собой экранированный кабель; он подключается к разъему XoutR с помощью 3-контактного разъема из цанговых гнезд SIP3 (XKoutR). На втором конце этого кабеля расположен точно такой же разъем SIP3 (XKpr), который подключается к входному разъему предварительного усилителя (например, описанного в статье автора [1]).

Остальные компоненты схемы в связи с ее простотой, на взгляд автора, в комментариях не нуждаются.

Все постоянные резисторы – для поверхностного монтажа размером 0603. Все конденсаторы керамические, также для поверхностного монтажа. Конденсаторы C2A, C2B, C3A и C3B имеют размер 0603 и максимальное напряжение 50 В; C1A и C1B – 0805, 25 В; CcA и CcB – 1206, 25 В. Переменный резистор RgA-RgB – сдвоенный потенциометр СП3-33-25 с функциональной характеристикой «В» (показательная или обратнологарифмическая, русская буква В). Переменный резистор RcA-RcB – импортный сдвоенный потенциометр 16T1-B10K или L15KC, 10 кОм с линейной функциональной характеристикой (латинская буква B). Кабели, соединяющие переменные резисторы с соответствующими разъемами, могут быть либо плоскими, либо, что лучше, экранированными, с подключением экрана к «земле»..

Литература

  1. Кузьминов А. Применение инструментального усилителя в усилителе низкой частоты. – Современная электроника, 2016, № 6, с. 46 – 51.
  2. Стародуб Д. Блок регуляторов тембра высококачественного усилителя НЧ. – Радио, 1974, № 5, с. 45, 46.
  3. Шихатов А. Тонкомпенсированные регуляторы громкости. – Радио, 2000, № 10, с. 12, 13.
  4. Пахомов A. Тонкомпенсированный регулятор громкости с активной бас-коррекцией. – Радио, 2003, № 6, с. 12 – 14.
  5. Демченко Б. Тонкомпенсированный регулятор громкости с переменным резистором без отводов. – Радио, 2015, № 12, с. 11 – 13.
  6. Сидоров И. Н., Мукосеев В. В., Христинин А. А. Малогабаритные трансформаторы и дроссели. Справочник. – Радио и связь. 1985.
  7. Елютин А., Ефремов Н. Let’s Test! АвтоЗвук, 2002,. № 7.

Окончание

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя