Altinkaya: турецкие корпуса для РЭА
РадиоЛоцман - Все об электронике

Микроконтроллеры в системах промышленной автоматизации

В статье рассматривается роль микроконтроллеров (МК) в системах промышленной автоматизации, в частности, речь пойдет о том, как на базе микроконтроллеров реализуется интерфейс реального мира для различного типа датчиков и исполнительных механизмов. Также мы обсудим необходимость интеграции в микроконтроллеры высокопроизводительных ядер, таких как ARM Cortex-M3, с прецизионной и специализированной периферией, которой снабжены микроконтроллеры серии ADuCM360 компании Analog Devices и семейства EFM32 компании Energy Micro (Silicon Labs). Также не останется без внимания относительно новый протокол обмена данными, который ориентирован на эту область приложений, с конкретной ссылкой на бюджетные микроконтроллеры семейства XC800/XC16x (Infineon) и MSP430F2274 (Texas Instruments), и на специализированные приемопередатчики, включая MAX14821 (Maxim).

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Микроконтроллеры интегрируют в себе технические возможности для обработки смешанных сигналов и вычислительную мощность, при этом уровень производительности МК и их функционал постоянно растет. Однако существуют другие разработки, которые позволяют продлить жизненный цикл бюджетных и низкопроизводительных микроконтроллеров.

По определению, микроконтроллеры бесполезны без связи с «реальным миром». Они были разработаны, чтобы действовать в качестве концентраторов для входов и выходов, выполняя задачи условных переходов и управляя последовательными и параллельными процессами. Их роль определяется управлением, в то время как возможность программирования означает, что характер управления задается логикой. Тем не менее, они изначально разрабатывались с целью получить интерфейс для аналогового мира, и, следовательно, в своей работе микроконтроллеры существенно опираются на процесс аналого-цифрового преобразования. Часто это цифровое представление аналогового параметра, обычно получаемого от какого-то датчика, на основе которого строится процесс управления, и основное применение микроконтроллера в таком случае видится в системах автоматизации. Способность управлять большими и сложными механическими системами, используя миниатюрный и относительно дешевый «кусочек» кремния, способствовало тому, что микроконтроллеры стали самым важным элементом промышленных систем автоматизации, и не удивительно, что многие производители стали выпускать специализированные семейства микроконтроллеров.

Прецизионная работа

По соображениям коммерческой необходимости предполагается, что процесс преобразования данных, как ключевая функция микроконтроллеров, должен быть экономически эффективно внедрен в микроконтроллер, что приводит к повышению уровня интеграции функционала для обработки смешанных сигналов. Кроме того, рост уровня интеграции способствует увеличению нагрузки на ядро.

Низкая стоимость и гибкость функционала микроконтроллеров означает широкое применение микроконтроллеров в различных приложениях, но производители в настоящее время стремятся к объединению множества функций в одном микроконтроллере по соображениям экономической эффективности, сложности или безопасности. Где когда-то, возможно, использовались десятки микроконтроллеров, сейчас потребуется только один.

Поэтому неудивительно, что то, что начиналось с 4-разрядных устройств, теперь превратилось в очень сложные и мощные 32-разрядные процессорные ядра, а ядро ARM Cortex-M стало выбором многих производителей.

Совместить высокопроизводительное процессорное ядро с прецизионным и стабильным аналоговым функционалом – непростая задача. Технология КМОП идеальна для высокоскоростных цифровых схем, но с реализацией чувствительной аналоговой периферии могут быть проблемы. Одной из компаний, имеющей огромнейший опыт в этой области, является Analog Devices. Разработанное компанией семейство полностью интегрированных систем сбора данных ADuCM предназначено для непосредственного взаимодействия с прецизионными аналоговыми датчиками. При таком подходе не только уменьшается количество внешних компонентов, но и гарантируется точность преобразования и измерений.

Преобразователь, интегрированный, например, в систему ADuCM360 с ядром ARM Cortex-M3, представляет собой 24-разрядный сигма-дельта АЦП, являющийся частью аналоговой подсистемы. В указанную систему сбора данных интегрированы программируемые источники тока возбуждения и генератор напряжения смещения, но более важной частью являются встроенные фильтры (один из которых используется для прецизионных измерений, другой – для быстрых измерений), которые применяются для обнаружения больших изменений в исходном сигнале.

Работа с датчиками в режиме «глубокого сна»

Производители микроконтроллеров учитывают важную роль датчиков в системах автоматизации и начинают разрабатывать оптимизированные входные аналоговые схемы, которые обеспечивают специализированный интерфейс для индуктивных, емкостных и резистивных датчиков.

Разработаны даже такие входные аналоговые схемы, которые могут работать автономно, например, интерфейс LESENSE (Low Energy Sensor) в микроконтроллерах с ультранизким энергопотреблением компании Energy Micro (Рисунок 1). В состав интерфейса входят аналоговые компараторы, ЦАП и контроллер (секвенсер) с низким потреблением, который программируется ядром микроконтроллера, но затем работает автономно, в то время как основная часть устройства находится в режиме «глубокого сна».

Технология LESENSE компании Energy Micro подразумевает автономную работу интерфейса датчиков в системах промышленного контроля и автоматизации.
Рисунок 1. Технология LESENSE, интегрированная в микроконтроллеры EFM32, подразумевает автономную работу интерфейса датчиков  в системах промышленного контроля и автоматизации.

Контроллер интерфейса LESENSE работает от источника тактовой частоты 32 кГц и управляет его активностью, в то время как выходы компаратора могут быть сконфигурированы как источники прерываний для «пробуждения» процессора, а ЦАП может быть выбран в качестве источника опорного сигнала компаратора. Технология LESENSE также включает в себя программируемый декодер, который можно настроить на генерирование сигнала прерывания только при выполнении условий нескольких датчиков в одно время. Компания Digi-Key предлагает стартовый набор EFM32 Tiny Gecko Starter Kit, в состав которого входит демонстрационный проект LESENSE. Микроконтроллеры семейства Tiny Gecko выполнены на ядре ARM Cortex-M3 с рабочей частотой до 32 МГц и нацелены на применение в системах промышленной автоматизации, где требуется измерение температуры, вибрации, давления и регистрация движений.

Стартовый набор EFM32 Tiny Gecko Starter Kit позволит полностью оценить возможности микроконтроллеров семейства Tiny Gecko.
Рисунок 2. Стартовый набор EFM32 Tiny Gecko Starter Kit позволит полностью оценить возможности микроконтроллеров семейства Tiny Gecko.

Протокол IO-Link

Внедрение нового мощного интерфейса датчиков и исполнительных механизмов помогает многим производителям продлить жизненный цикл своих 8- и 16-разрядных микроконтроллеров на арене промышленных систем автоматизации. Этот протокол интерфейса передачи данных получил название IO-Link и уже поддерживается лидерами в секторе промышленной автоматизации и, в частности, производителями микроконтроллеров.

Передача данных по протоколу IO-Link осуществляется по 3-проводному неэкранированному кабелю на расстояния до 20 метров, что позволяет внедрить интеллектуальные датчики и исполнительные механизмы в существующие системы. Протокол подразумевает, что каждый датчик или исполнительный механизм является «интеллектуальным», другими словами каждая точка выполнена на микроконтроллере, но сам протокол очень простой, поэтому для этих целей вполне будет достаточно 8-разрядного микроконтроллера, и это именно то, что используется в настоящее время многими производителями.

Протокол (также известный как SDCI - Single-drop Digital Communication Interface, регламентирован по спецификации IEC 61131-9) является сетевым коммуникационным протоколом связи типа «точка-точка», с помощью которого связываются датчики и исполнительные механизмы с контроллерами. IO-Link делает возможным интеллектуальным датчикам передавать в контроллеры свой статус, параметры всех настроек и внутренние события. Как таковой, он не предназначен для замены существующих коммуникационных уровней, таких как FieldBus, Profinet или HART, но может работать вместе с ними, упрощая обмен данными бюджетного микроконтроллера с прецизионными датчиками и исполнительными механизмами.

Консорциум производителей, использующих IO-Link, считает, что можно значительно снизить сложность систем, а также ввести дополнительные полезные функции, например, диагностику в реальном времени посредством параметрического мониторинга (Рисунок 3). При интеграции в топологию FieldBus через шлюз (опять же, реализуется на микроконтроллере или программируемом логическом контроллере), сложные системы могут контролироваться и управляться централизованно из диспетчерской. Датчики и исполнительные механизмы можно настроить удаленно, отчасти потому, что датчики по спецификации IO-Link знают о себе намного больше, чем «обычные» датчики.

В первую очередь заметим, что собственный идентификатор (и производителя) и различные настройки встроены в датчик в формате XML и доступны по запросу. Это позволяет системе мгновенно классифицировать датчик и понять его назначение. Но, что более важно, IO-Link позволяет датчикам (и исполнительным механизмам) предоставлять контроллеру данные непрерывно в реальном времени. Фактически, протокол подразумевает обмен тремя типами данных: данные о процессе, сервисные данные и данные о событиях. Данные о процессе передаются циклически, а сервисные данные передаются ациклично и по запросу ведущего контроллера. Сервисные данные могут использоваться при записи/чтении параметров устройства.

Интерфейс IO-Link предлагает для микроконтроллеров более простой способ обмена данными с интеллектуальными датчиками и исполнительными механизмами
Рисунок 3. Интерфейс IO-Link предлагает для микроконтроллеров более простой способ обмена данными с интеллектуальными датчиками и исполнительными механизмами, а для разработчиков – возможность создавать интеллектуальные системы автоматизации.

Некоторые производители микроконтроллеров присоединились к консорциуму IO-Link, который недавно стал Техническим Комитетом (TC6) в составе международного сообщества PI (PROFIBUS & PROFINET International). По сути, IO-Link устанавливает стандартизированный метод для контроллеров (включая микроконтроллеры и программируемые логические контроллеры) для идентификации, контроля и обмена данными с датчиками и исполнительными механизмами, которые используют этот протокол. Список производителей IO-Link-совместимых устройств постоянно растет, как и всесторонняя аппаратно-программная поддержка производителей микроконтроллеров.

Часть этой поддержки исходит от компаний специализирующихся на этой области, например, Mesco Engineering – немецкая компания, которая сотрудничает с рядом производителей полупроводниковых приборов с целью разработки решений IO-Link. В списке ее партнеров достаточно крупные и известные компании: Infineon, STMicroelectronics, Atmel и Texas Instruments. Infineon, например, портировала программный стек от Mesco на свои 8-разрядные микроконтроллеры серии XC800, а также оказывает поддержку разработки ведущего устройства IO-Link на базе своих 16-разрядных микроконтроллеров.

Стек, разработанный Mesco, также был портирован на 16-разрядные микроконтроллеры Texas Instruments серии MSP430, в частности, для MSP430F2274.

Производители также уделяют свое внимание разработке дискретных приемопередатчиков интерфейса IO-Link. Например, компания Maxim выпускает микросхему MAX14821, которая реализует интерфейс физического уровня для микроконтроллера, поддержтвающего канальный уровень протокола (Рисунок 4). Два внутренних линейных регулятора вырабатывают общие для датчика и исполнительного механизма напряжения питания 3.3 В и 5 В, подключение к микроконтроллеру для конфигурирования и мониторинга осуществляется по последовательному интерфейсу SPI.

Микросхема приемопередатчика MAX14821
Рисунок 4. Микросхема приемопередатчика MAX14821 предоставляет физический уровень интерфейса IO-Link для микроконтроллера, реализующего канальный уровень интерфейса.

Вполне вероятно, что благодаря простоте реализации и внедрения интерфейса IO-Link, все больше производителей будут интегрировать этот физический уровень с другой специализированной периферией, присутствующей в микроконтроллерах, с целью применения в промышленных системах автоматизации. Компания Renesas уже представила ассортимент специализированных контроллеров IO-Link Master/Slave на основе своих 16-разрядных микроконтроллеров семейства 78К.

Системы промышленной автоматизации всегда зависели от сочетания измерений и управления. В течение последних нескольких лет заметен рост уровня промышленных сетевых коммуникаций и протоколов, однако, интерфейс между цифровой и аналоговой частью системы остался относительно неизменным. С введением интерфейса IO-Link датчики и исполнительные механизмы,  разрабатываемые в настоящее время, способны все же взаимодействовать с микроконтроллером в более изощренной форме. Коммуникационный протокол связи типа «точка-точка» обеспечивает не только более простой способ обмена данными для управления элементами системы, но и расширение возможностей бюджетных микроконтроллеров.

digikey.com

Перевод: Vadim по заказу РадиоЛоцман

На английском языке: MCUs in Industrial Automation

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя