На склад поступили жидко-кристаллические индикаторы и дисплеи от KSE
РадиоЛоцман - Все об электронике

Что нужно знать о радиотелескопах

Журнал РАДИОЛОЦМАН, май 2019

Lou Frenzel

Electronic Design

Экстремальные радиотехнологии, включая огромные антенные системы и гигантские параболы, позволяют проводить самые передовые исследования космоса

Радиотелескопы – это просто огромные чувствительные широкополосные приемники, в которых используются некоторые из самых передовых беспроводных технологий. Вы, наверное, слышали о радиотелескопах, но все ли вы знаете о том, как они работают, и о некоторых используемых в них экстремальных радиотехнологиях?

Что нужно знать о радиотелескопах

Большинству телескопы известны как оптические инструменты для наблюдения за далекими объектами. По сути, радиотелескоп – это то же самое. Но вместо того, чтобы искать свет, он ищет радиоволны. Сегодня мы с помощью оптического телескопа можем визуально увидеть то, что кажется бесконечным числом звезд, планет и галактик. Но это не все. Множество других вещей в космосе мы увидеть просто не можем. Причина этого заключается в том, что пыль и пылевые облака в космосе блокируют значительное количество света во вселенной. Но радиоволны проникают прямо сквозь облака и пыль, а также через земную атмосферу.

Оказывается, почти все в космосе излучает электромагнитные волны. Как вы помните, электромагнитный спектр начинается от постоянного тока, проходит через радиоволновый диапазон, затем переходит в инфракрасную область, за которой следует видимый свет. По мере увеличения частоты и снижения длины волны, начинаются ультрафиолетовые волны, за которыми следуют рентгеновские лучи, гамма-лучи и так далее. Радиоволны можно считать очень низкочастотным светом. Или считать свет сверхвысокочастотными радиоволнами.

Что нужно знать о радиотелескопах

Инфракрасные волны приходят от тепла. Любой объект, который излучает тепло при любой температуре выше абсолютного нуля (–273 °C), излучает радиоволны. Звезды, планеты, ионизированные газы и галактики – все излучают радиоволны. Сигналы очень слабы, так как они достигают нас через огромные расстояния. Даже при скорости света 300,000,000 метров в секунду, для того, чтобы далекие космические сигналы достигли нас, нужны годы. Но если мы сможем построить достаточно чувствительный приемник, мы сможем собрать их, изучить и попытаться понять, что же происходило в космосе в прошлом.

Приемник на основе передовых технологий

Хороший чувствительный приемник начинается с большой антенны. Чтобы преобразовывать эти крошечные сигналы из космоса в поток электронов, который мы можем зарегистрировать и обработать, антенны радиотелескопа должны быть большими, с высоким усилением и узкой диаграммой направленности. Большинство радиотелескопов имеют огромное параболическое зеркало. Поперечник самых больших из них – сто или больше футов.

Размер зеркала, или апертура, определяет коэффициент усиления антенны и ее минимальную полезную частоту. Большие зеркала имеют механические системы для вращения их по азимуту и углу наклона. Большая парабола собирает поступающие волны в сконцентрированный пучок в фокусе, где антенна преобразует слабый сигнал в напряжение, которое можно усилить.

Кстати, единица измерения силы сигнала в радиоастрономии называется янский (Ян), в честь Карла Янского (Karl Jansky), который был первым ученым, обнаружившим радиоволны из космоса. Один янский составляет 10–26 Вт на квадратный метр на герц. Согласитесь, не очень-то мощный сигнал.

Самые современные беспроводные приемники начинаются с малошумящего усилителя (МШУ). Шум является главным врагом слабых радиосигналов, поскольку при слишком высоком уровне он может их полностью маскировать. Несмотря на свое название, МШУ также добавляет шум приемнику. По большей части этот шум является тепловым, вызванным нагревом, который возбуждает атомы и электроны, создающие случайный сигнал. Возможно, вы знаете, что напряжение теплового шума рассчитывается как

где

T – температура в градусах Кельвина (K), или в градусах Цельсия + 273;
B – ширина в Гц полосы частот, в которой проводятся измерения;
R – активное сопротивление компонента, создающего шум;
k – постоянная Больцмана, или 1.38×10–23.

В приемнике радиотелескопа МШУ охлаждается криогенными методами до температуры, близкой к абсолютному нулю (4 K). Внешний интерфейс приемника (МШУ, смеситель и облучатель) помещен в герметичный корпус и охлаждается жидким гелием. Вот это по настоящему малошумящий усилитель!

В усилителях также используются специальные компоненты, такие как транзисторы и интегральные схемы, сделанные из материалов, которые лучше всего работают на частотах дециметрового, сантиметрового и миллиметрового диапазонов. Среди них гетероструктурные полевые и биполярные транзисторы, а также транзисторы с высокой подвижностью электронов (HEMT), изготовленные из арсенида галлия (GaAs) и фосфида индия (InP).

После предварительного усиления сигналов перед детектированием диодом Шоттки их частота понижается в смесителе до более низкой, обычно лежащей в диапазоне от 1 до 10 ГГц. После детектирования сигналы оцифровываются и сохраняются, а затем преобразуются в цветные визуальные изображения, помогающие объяснить их природу. Поскольку удаленные космические сигналы относительно постоянны, их можно наблюдать непрерывно и усреднять для улучшения отношения сигнал/шум.

Радиотелескоп с очень большой антенной системой (VLA)  в Нью-Мексико. (Изображение с Wikipedia).
Радиотелескоп с очень большой антенной системой (VLA) в Нью-Мексико.
(Изображение с Wikipedia).

Вполне предсказуемо, что на верхних частотах миллиметрового диапазона получить большой коэффициент усиления трудно. Одно из решений заключалось в исключении усилителя и подаче сигнала антенны непосредственно в смеситель, который смещает сигнал в более низкочастотную область, где проще добиться более низкого шумового усиления. Но с этим связана проблема создания малошумящих смесителей. В настоящее время она была решена с помощью специального устройства, известного как смеситель со структурой сверхпроводник-изолятор-сверхпроводник (СИС), нелинейность которого обусловлена квантовым туннелированием между двумя сверхпроводниками.

Раньше в большинстве радиотелескопов использовалась одна огромная параболическая антенна. Она может охватывать широкие диапазоны частот и усилений и обладать узкой диаграммой направленности. В более старых оригинальных разработках приемник располагался в фокальной точке параболы, чтобы получить усиление до того, как добавят шум другие части системы. Сегодня более распространенным является размещение в фокальной точке отражателя, который направляет сигнал в центр тарелки, где можно более надежно установить тяжелый приемный блок с его криогенными компонентами.

Растущая тенденция состоит в том, чтобы делать несколько меньших (менее 25 м) параболических антенн и располагать их в подвижном массиве, чей совокупный выходной сигнал будет таким же, если не мощнее, чем у одной большой параболы. Примером может служить очень большая антенная система (Very Large Array – VLA) в Нью-Мексико. В ней используются 27 парабол диаметром 25 метров каждая. Одним из применений таких составных конструкций является одновременное подключение к приемнику двух или более антенн для реализации интерферометрии – совокупности методов наложения сигналов для улучшения разрешения.

Значительная часть систем радиотелескопа приходится на вычислительную систему. Все полученные сигналы оцифровываются, сохраняются и подвергаются широкому спектру методов глубокой обработки. Вычислительная мощность системы впечатляет, поскольку центральный процессор, ПЛИС или другое устройство должны выполнять преобразования Фурье и другой анализ больших чисел с плавающей точкой. Сообщалось об использовании систем с производительностью до 750 миллиардов операций с плавающей точкой в секунду.

Частоты, представляющие интерес

Из космоса приходят радиосигналы с частотами от нескольких мегагерц до 1 ТГц. Большинство из них находится в диапазоне сотен мегагерц или единиц гигагерц. Некоторые сигналы поступают от источников тепла, но другие излучаются на одной частоте. Первыми были обнаружены сигналы в диапазоне 160 МГц. Основная часть сигналов была найдена на частоте 178 МГц. Мощный нетепловой сигнал исходит от водорода – вселенная заполнена водородом, который излучает очень узкий сигнал на частоте 1420 МГц (21 см). Астрономы выполнили широкомасштабное исследование неба на частоте 5 ГГц. Доступ к некоторым частотам, например, 10.7 ГГц и 15.4 ГГц, ограничен Федеральной комиссией по связи (FCC) и Национальной администрацией по связи и информации США (NTIA). Молекулы аммиака были обнаружены на частоте 22 ГГц. Окись углерода (СО) нашли на частоте 115 ГГц.

Источники космических сигналов могут иметь много частот. Это значит, что хорошие приемники радиотелескопов должны поддерживать широкий диапазон перестраиваемых частот. Для приема сигналов миллиметровых волн разрабатываются новые, более свершенные системы. Технология развивается, приближаясь к частоте 1 ТГц.

Правда о применениях радиотелескопов

Ученые используют радиотелескопы для изучения вселенной с ее огромным количеством звезд (солнц), планет, лун, галактик и странных источников, таких как пульсары, квазары и черные дыры. Астрономы способны измерять частоту сигнала, которая может изменяться, если источник движется по направлению к приемнику или от него. Используя принцип Допплера, они могут делать потрясающие измерения скоростей и расстояний.

Благодаря своей универсальности, большие радиотелескопы, помимо космического картографирования, использовались также и в других проектах. Одним из приложений является слежение за удаленными космическими аппаратами. Они могут использоваться в качестве резервного средства практически в любом виде деятельности, связанной с космосом: исследовании Луны, изучении Марса, связи с шаттлами и космическими станциями, а также для слежения за спутниками. И, конечно же, для поиска внеземного разума.

Гигантский радиотелескоп в Аресибо, Пуэрто-Рико. (Изображение с Wikipedia).
Гигантский радиотелескоп в Аресибо, Пуэрто-Рико. (Изображение с Wikipedia).

Продолжается создание новых радиотелескопов. Многие из них состоят из множества параболических антенн. При этом сохраняется тенденция к увеличению размеров одиночных зеркал. Самый большой радиотелескоп США находится в Аресибо в Пуэрто-Рико. Это огромное 305-метровое сферическое зеркало, встроенное в долину. В настоящее время самый большой радиотелескоп диаметром 500 метров принадлежит Китаю. Трудно даже представить, что он будет способен «увидеть».

Новые приемники с СИС-смесителями, МШУ на HEMT транзисторах и криогенным охлаждением способны принимать сигналы с частотой, достигающей 950 ГГц, делая радиотелескопы воплощением прорывных технологий. Вероятно, и военные используют некоторые новейшие технологии, о которых мы не знаем. Как бы мы использовали эту технологию, если бы ее можно было перенести в коммерческий сектор? Есть идеи? Как насчет базовой станции сотовой связи с криогенным охлаждением. Подумайте об этом. А с другой стороны, может быть, и не стоит.

Перевод: Дмитрий Леканов по заказу РадиоЛоцман

На английском языке: What You Need to Know About Radio Telescopes

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя