РадиоЛоцман - Все об электронике

Основы конструирования усилителей класса D

Журнал РАДИОЛОЦМАН, октябрь 2011

Hugo Letourneau, Future Electronics

Истинные аудиофилы всегда мечтали сконструировать идеальный усилитель, абсолютно достоверно воспроизводящий каждый звук, записанный на студии. Возможно, они начали мечтать об этом, когда, получив первые уроки электроники, узнали, что топология класса A дает великолепные результаты с точки зрения линейности. Иногда горячие студенты, невзирая на предупреждения своих учителей, пытались изобрести велосипед, посвятив себя созданию усилителя класса A с выходной мощностью 150 Вт на канал, чтобы поразить всех друзей мощным и совершенным звуком. И каждый раз, когда разработка подходила к финальной стадии, выяснялось, что усилитель, по большому счету, представляет собой мощный обогреватель, а его корпус является раскаленным радиатором для транзисторов выходного каскада.

Затем эти студенты начинали увлекаться вопросами снижения энергопотребления, и делали усилители класса B или AB, а наиболее усердные, исследовав все топологии, останавливались на классе D. Для новичков в конструировании усилителей сообщим. В усилителе класса A выходной транзистор усиливает весь сигнал, т.е., 360°. В системах класса B каждый транзистор усиливает только одну полуволну сигнала, или 180°.

Усилители класса AB занимают промежуточное положение с диапазоном, примерно, от 180° до 270°, в зависимости от тока покоя выходного каскада. Усилители класса D часто называют «цифровыми» усилителями, так как выходные транзисторы работают в ключевом режиме, генерируя прямоугольные импульсы, а выходной сигнал на громкоговорители подается через фильтры. Основное преимущество топологии класса D – обусловленный ее цифровым характером высокий КПД, который может превышать 90%. Типовые схемы для каждой топологии выходного каскада показаны на Рисунке 1.

Типичные базовые схемы усилителей классов A, B или A/B, и полномостового усилителя класса D
Рисунок 1. Слева направо: типичные базовые схемы усилителей классов A, B или A/B, и полномостового усилителя класса D.

Усилители класса D известны более 25 лет, но настоящую популярность приобрели лишь 10-15 лет назад, или около того. Из за их высокого КПД, они использовались, главным образом, на низких частотах при больших уровнях мощности, т.е., для управления сабвуферами, и очень редко – в средне- и высокочастотных приложениях, вследствие значительных искажений, связанных с несовершенством технологии переключающих схем того времени.

Чтобы сделать усилитель класса D с приличным звучанием, необходимо учесть множество параметров, не пропустив ни одного элемента в цепи прохождения сигнала. Без этого не удастся добиться хороших звуковых характеристик во всем диапазоне частот. На Рисунке 2 изображена простая блок-схема типичного цифрового усилителя. Каждый прямоугольник этой блок-схемы должен быть тщательно выверен и согласован с остальными. Лишь в этом случае можно достичь определенного баланса и создать усилитель, отвечающий требованиям нашего уха.

Рисунок 2. Путь прохождения сигнала в усилителе класса D.

Каскад ШИМ-модулятора

ШИМ сигнал можно получить с помощью как аналоговой, так и цифровой схемы, точно так же, как аналоговым или цифровым может быть источник звука. Проще всего получить сигнал ШИМ сравнением треугольного напряжения со звуковым сигналом, как это показано на Рисунке 3. Если источник сигнала цифровой, превратить импульсно-кодовую модуляцию в ШИМ можно, используя цифровой сигнальный процессор. В любом случае, первостепенное значение для формирования ШИМ сигнала имеют величина джиттера и стабильность всех генераторов, так как несколько пикосекунд среднеквадратичного значения джиттера навсегда похоронят мечты о создании усилителя c отношением сигнал/шум лучше 100 дБ. В цифровых ШИМ системах добавляется ошибка квантования, порождаемая конечным числом уровней ШИМ.

Рисунок 3. Простой ШИМ-модулятор.

Методы формирования шумов совершенствовались на протяжении многих лет, в результате чего появились новые технологии, такие, как PDM (pulse-density modulation – плотностно-импульсная модуляция) и дельта-сигма модуляция, которые, теоретически, позволяют сместить спектр шумов дискретизации далеко за область полезных частот, где они могут быть эффективно подавлены фильтрами.

Компаратор должен иметь большую скорость нарастания напряжения и, желательно, двухтактный выходной каскад. Хороший выбор – микросхема LMV7239, имеющая время задержки распространения сигнала 45 нс и время нарастания/спада 1.2 нс. Немаловажное значение имеет качество трассировки печатной платы, чтобы предотвратить возникновение «звона». Помимо этого, весьма критична топология распределения шин питания и развязывающих конденсаторов. Небрежность в этом вопросе может приводить к увеличению уровня джиттера выходного сигнала. Следует, также, избегать чрезмерной емкостной нагрузки на линию, соединяющую выход модулятора с драйвером MOSFET транзисторов.

Несимметричный или дифференциальный?

Прежде чем выбирать, каким будет выходной каскад, – несимметричным или дифференциальным, – очень важно понять влияние этого выбора на характеристики конструкции. Несимметричный режим выгоднее с точки зрения количества и цены компонентов, но для предотвращения постоянного смещения выхода потребуется развязывающий конденсатор. Кроме того, все колебания напряжения питания неизбежно передаются прямо на выход, еще более увеличивая уровень искажений. Поэтому использовать несимметричную схему без обратной связи невозможно.

Дифференциальный режим затратнее, но дает много преимуществ, таких как меньший уровень четных гармоник, улучшенная устойчивость к колебаниям питающего напряжения, меньшая мощность, рассеиваемая каждым транзистором, и более простое решение задачи устранения постоянного смещения, не требующее развязывающих конденсаторов. Обратная связь может улучшить выходной сигнал, однако дифференциальная топология без обратной связи искажает сигнал намного меньше, чем несимметричная.

Выходной MOSFET каскад и драйвер

В схеме, изображенной на Рисунке 2, важны все элементы, но два из них оказывают наибольшее влияние на искажения выходного сигнала. Это MOSFET транзисторы и их драйвер. Качество звука очень зависит от формы импульсной последовательности, и любое отклонение ШИМ сигнала от идеального ухудшает его качество.

Для этого каскада важны, и должны быть рассмотрены, многие характеристики MOSFET транзисторов:

  • ток управления и входная емкость;
  • мертвое время (что важно для исключения сквозных токов);
  • сопротивление открытого канала;
  • время включения/выключения.

Любой из этих параметров влияет не только на качество звука, но и на рассеиваемую транзисторами мощность. «Мертвое время» – это задержка между выключением одного транзистора и включением другого, время, в течение которого оба транзистора выключены (или находятся в процессе выключения). При отсутствии мертвого времени, скорее всего, будет возникать ситуация, когда один транзистор выходного каскада уже открыт, а другой еще не закрыт, вследствие чего ток от положительной шины питания будет протекать к отрицательной шине напрямую через два открытых транзистора. Этот ток называется сквозным и должен быть минимизирован подбором соответствующего мертвого времени. Сквозной ток является основной причиной нелинейных искажений в системах класса D. Недостаточное мертвое время может ухудшить коэффициент нелинейных искажений на проценты. Выбор MOSFET транзисторов и симметрия плеч выходного каскада – важнейший момент в проектировании высококачественного усилителя.

Ток управления затвором MOSFET транзистора должен соответствовать его емкости, чтобы иметь малые времена нарастания и спада импульсов на входе транзистора, которые, в свою очередь, обеспечат крутые фронты в выходном сигнале. В свою очередь, источник питания должен быть способен отдавать большие импульсные токи.

Мощность рассеивания и правильный выбор MOSFET транзистора

Транзисторы в переключающих каскадах класса D преобладающую часть времени полностью открыты или полностью закрыты, и рассеиваемая ими мощность минимальна. Как видно из Рисунка 1, в системах класса D используются двухтактные, каскады, в полу- или полномостовой конфигурации, выходными сигналами которых являются прямоугольные импульсы. При этом поочередно, равное время, открыт то один MOSFET транзистор, подключенный к положительной шине питания, то другой, подключенный к отрицательной шине. Теоретически, это могут быть два разных транзистора, с каналами N и P типа, но практически предпочтительнее использовать сдвоенные N-канальные транзисторы, обеспечивающие повышенную симметрию и лучшее мертвое время. Включенный MOSFET транзистор рассеивает очень небольшую мощность, являющуюся функцией прямого падения напряжения, зависящего, в свою очередь, от сопротивления открытого канала RDS(ON). Это имеет огромное значение, не только с точки зрения экономии энергии, но, прежде всего, с точки зрения габаритов схемы. К примеру, выходной каскад 100-ваттного усилителя класса A рассеивает в виде тепла мощность 300 Вт и требует очень больших транзисторов и теплоотводов, усилитель класса AB вполне можно сделать, используя транзисторы в корпусах TO3 и радиаторы традиционных размеров, а для усилителя класса D будет достаточно транзисторов в корпусах SOT223 или TO89. А это означает, что хороший усилитель мощности может иметь относительно небольшие размеры, которые, по мере развития технологии, будут постоянно уменьшаться, благодаря росту эффективности и снижению габаритов используемых приборов.

Одна из распространенных ошибок заключается в том, что, стремясь к наивысшей эффективности, разработчики выбирают MOSFET транзисторы с наименьшим значением RDS(ON) и ожидают, что транзисторы будут совершенно холодными. В реальности все может быть совершенно по-другому.

Транзисторы с самым низким сопротивлением RDS(ON) имеют большую входную паразитную емкость. Управлять затвором транзисторов с большой емкостью намного труднее, приходится ограничивать частоту переключения, а это, в свою очередь, увеличивает время нарастания и спада импульсов. Поэтому нужно пытаться выбирать транзисторы с небольшой входной емкостью, чтобы облегчить управление транзистором. В общем случае, для MOSFET транзисторов с низким сопротивлением RDS(ON) характерна прямая связь входной емкости с пробивным напряжением сток-исток, т.е., при уменьшении емкости уменьшается и напряжение. Выбор оптимального транзистора должен начинаться с сопоставления пробивного напряжения VDSS и требуемых характеристик схемы. Далее следует убедиться, что транзистор имеет приемлемую, с точки зрения потерь мощности, величину RDS(ON), но основным критерием должна быть минимальная входная емкость, которая позволяла бы упростить управление транзистором и облегчить режим работы драйвера затвора.

Разработчик не должен пренебрегать коммутационными потерями, обусловленными паразитными емкостями дискретных элементов. Полная мощность, рассеиваемая MOSFET транзистором, выражается следующей формулой:

PD = PRESISTIVE + PSWITCHING = RDS(ON) × ILOAD2 + (CRSS × V2 × FSW × ILOAD) / IGATE

где

ILOAD – ток нагрузки
CRSS – емкость затвора
V  – размах напряжения на нагрузке
FSW – частота переключения
IGATE – ток затвора

К примеру, давайте представим, что для выходного каскада мощностью 100 Вт мы выбрали замечательный транзистор FDP047N10 фирмы Fairchild Semiconductor, имеющий RDS(ON) = 3.9 мОм и CRSS = 455 пФ, который управляется MOSFET драйвером с выходным током 1 А. Каскад нагружен сопротивлением 8 Ом, размах напряжения на нагрузке 50 В при частоте сигнала 100 кГц. Рассеиваемая транзисторами мощность не превысит:

PD = 0.0039×5 А + (455×10–12×502×100×103×5 А) / 1 А = 0.0195 + 0.568 = 0.588 Вт

Если же выбрать транзистор FDP3651U, той же фирмы, с параметрами RDS(ON) = 18 мОм и CRSS = 89 пФ, рассеиваемая мощность будет равна:

PD = 0.018×5 А + (89×10–12×502×100×103×5 А)/1 А = 0.09 + 0.111 = 0.201 Вт

Из приведенного примера несложно сделать заключение, что выбор MOSFET транзистора должен основываться не просто на величине сопротивления канала в открытом состоянии, а на оптимизации совокупности характеристик.

Хорошим дополнением к транзистору FDP3651U может быть драйвер MOSFET транзисторов LM27222 фирмы National Semiconductor с адаптивной защитой от сквозных токов, потенциально позволяющий снизить «мертвое время» до 10 нс, а ширину импульса, при соответствующем выборе транзистора, до 30 нс.

Выходной фильтр

С завершением создания выходного каскада тяжелая работа еще не заканчивается. Очередной критический каскад, требующих серьезных усилий от разработчика – выходной фильтр. Фильтр должен убрать импульсы из выходного сигнала и сузить полосу сигнала, оставив лишь полезную, слышимую часть до 20 кГц. Некоторые конструкторы полагаются на естественную способность громкоговорителей отфильтровывать высокочастотные составляющие сигнала, но это делает результирующую передаточную функцию сильно зависящей от громкоговорителя. Серьезный разработчик, скорее всего, будет использовать пассивный фильтр с тщательно подобранными компонентами. Как правило, желательно иметь передаточную функцию с двумя полюсами, которую имеют, скажем, фильтры Баттерворта, Бесселя или Гаусса. Идеальная передаточная функция аудио фильтра в полосе звуковых частот должна иметь линейную фазовую характеристику, постоянную групповую задержку и эффективно ослаблять частоту ШИМ.

Через выходной фильтр протекают большие токи с большой скоростью нарастания dI/dt. Это необходимо учитывать при выборе катушки, чтобы минимизировать искажения звука, обусловленные нелинейными эффектами, проявляющимися, когда сердечник катушки близок к насыщению. Для эффективного подавления частоты ШИМ и предотвращения паразитного авторезонанса частота собственного резонанса катушки должны быть выше частоты коммутации и нескольких ее гармоник. Использовать алюминиевые электролитические конденсаторы крайне нежелательно. Нужно выбирать из фторопластовых, полистирольных, поликарбонатных, или, даже, из полипропиленовых или майларовых конденсаторов. Некоторые из этих экзотических пленок достаточно дороги, зато предотвратят неприятную окраску звука, вносимую алюминиевыми конденсаторами.

Печатная плата

Большое значение имеет выбор правильной конструкции печатной платы, с минимальной паразитной индуктивностью проводников, в особенности тех, через которые протекает выходной ток, способный создавать крайне нежелательные эффекты. Вследствие своей импульсной природы, усилители класса D генерируют токи с большой скоростью нарастания dI/dt, которые вызывают как падение напряжения на паразитных элементах схемы, так, возможно, и «звон». Для управления этим явлением к выходу схемы могут добавляются демпфирующие цепи, а время нарастания импульсов, во избежание возникновения резонансных контуров, согласовывается с частотным спектром сигнала. Эти решения, безусловно, помогают решить проблему «звона», но, одновременно, ухудшают качество аудио сигнала и, поэтому, никогда не заменят хорошей трассировки платы, минимизирующей вариации импеданса на пути прохождения сигнала, и правильного выбора компонентов, учитывающего возможность возникновения паразитных явлений.

Еще один критический момент в конструировании усилителя – распределение питания, фильтрация и развязки. Это важно для поддержания малозашумленного, постоянно стабильного напряжения на шинах питания, в особенности, в несимметричной конфигурации с полумостовым выходом, когда любые возмущения с частотой ниже частоты среза фильтра передаются на громкоговоритель.

Есть еще множество параметров, мимо рассмотрения которых нельзя пройти при конструировании усилителя, но того, о чем рассказано в этой статье, должно быть достаточно, чтобы заложить добротную основу для разработки. Хорошая аудиосистема – это всегда продукт многомесячной работы, движения по пути, полному препятствий и компромиссов, движения, в которое вовлекаются ваши чувства и эмоции, в конце которого вас ожидает незабываемый момент.

Перевод: AlexAAN по заказу РадиоЛоцман

На английском языке: Class D Amplifier Design

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя
Фрагменты обсуждения:Полный вариант обсуждения »
  • Так о чём спорить? Я всегда за D был :D . Это пусть уже лампочники поплюются со своим "живым звучанием"... их нужно на полиграф, или на опыты в поликлинику к ЛОРу сдавать, для экономии семейного бюджета, пусть лучше детям ЛЕГО покупают чаще, для развития моторики и пространственного мышления, а себе Сникерс с миндалем для питания мозга...:)
  • Для дома,не актуально.Когда речь идет о больших мощностях,пожалуй.
  • Лампочники доходят до абсурда. Вот пара постов с лампочного форума на adioportal.su. [I]"Кто знаком с темой посоветуйте пожалуйста какие диоды из отечественных или доступных импортных лучше применить в выпрямителе б.п. лампового ус-ля(вообще собирался ставить КД213 - говорят у них басы получаются никакие , советовали КД226 ). Заранее спасибо тем кто откликнулся". "Отрицать влияние сетевого кабеля глупо, достаточно взять и самому попробовать, послушать. Степень этого влияния в разных системах будет разной, но будет все равно. Не будем доходить до юстирования высоты розеток ( Олег, привет) , потому как "сетевыми" станут провода в стене, а их замена проблематична Лучше это влияние использовать для гармонизации системы, именно гармонизации, а не улучшения, как такового. Почитайте Макарова, одними проводами второй год человек занят. Шельмует? Нет, ходоки подтверждают. Так что здесь копия ломаем?".[/I]
  • Полагаю,что сравнение с лаповыми УНЧ ,мягко говоря не корректны.Сравнивать ,так уж с транзисторными.
  • Элементная база не главное. Нам уже привычны усилители классов A, B, C как ламповые, так и транзисторные. Ничто не мешает построить усилитель класса D на лампах.
  • Боюсь ,что этим некому будет заниматься.
  • Первый усилитель D класса был ламповый.
  • Наверное давно было.
  • Пост от vishz,про "сетевые влияния" на искажения потрясает. Лампочники-похожи на Зюганова. Партия есть-но никому ненужная...
Полный вариант обсуждения »