На склад поступили жидко-кристаллические индикаторы и дисплеи от KSE

Универсальный прибор для проверки радиоэлементов из стрелочного тестера

Журнал РАДИОЛОЦМАН, ноябрь 2015

Андрей Барышев, г. Выборг

Стрелочные тестеры типа 4353, 43101 и другие в свое время были широко распространены. Приборы имели встроенную защиту и позволяли производить измерения различных электрических параметров, однако отличались громоздкостью, а при измерении емкости конденсаторов были привязаны к сетевому напряжению. При этом тестеры имели неплохие стрелочные измерительные головки, которые можно использовать в конструкции с гораздо меньшими габаритами и бóльшими возможностями. Так, с использованием этой головки был сделан небольшой настольный аналоговый измерительный прибор с минимальным количеством элементов управления. Он позволяет с достаточной для радиолюбителя точностью измерять емкость неполярных конденсаторов (5 пФ – 10 мкФ), индуктивность катушек (от единиц мкГн до 1 Гн), емкость электролитических конденсаторов (1 мкФ – 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты (10, 100. 1000 Гц, 10, 100, 1000 кГц) и, кроме того, в него может быть добавлен встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколевки неизвестных транзисторов. Причем проверить параметры большинства элементов можно, не выпаивая их из схемы.

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Универсальный прибор для проверки радиоэлементов из стрелочного тестера Универсальный прибор для проверки радиоэлементов из стрелочного тестера

Модульная конструкция прибора позволяет использовать только необходимые функциональные узлы. Ненужные модули можно легко исключить, а нужные так же легко добавить при желании. Возможность сохранения «родных» функций прибора – измерения напряжений и токов – также имеется. Ну и, конечно, стрелочная измерительная головка может быть любой другой (с током полного отклонения 50 … 200 мкА), это не принципиально. Далее будут даны схемы и описания отдельных функциональных «модулей» прибора, а затем – структурная схема всего прибора полностью и схема коммутации отдельных его узлов. Все схемы были не раз проверены на практике и показали стабильную и надежную работу, без сложных настроек и использования каких-либо специфических деталей. При необходимости сделать компактный прибор для проверки конкретных компонентов и их параметров каждую такую схему-модуль можно использовать отдельно.

Генератор образцовых частот

Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 1. Генератор 1 МГц с делителями частоты.

Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, СD4026 или любых других. С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. C помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке.. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту. Схема питается напряжением 9 В.

Модуль измерения L, C

Схема каскада для измерения емкости неполярных конденсаторов и индуктивностей показана на Рисунке 2. Входной сигнал подается непосредственно с выхода переключателя диапазонов измерений (SA1 на Рисунке 1). Сформированный прямоугольный импульсный сигнал, поступающий на выход «F» через ключевой транзистор VT1, можно использовать для проверки или настройки других устройств. Уровень выходного сигнала можно регулировать резистором R4. Этот сигнал подается также на измеряемый элемент – конденсатор или индуктивность, подключенные, соответственно, к клеммам «C» или «L», при этом переключатель SA2 устанавливается в соответствующее положение. К выходу «Uизм.» подключается непосредственно измерительная головка (возможно, через добавочное сопротивление; см. ниже «Модуль индикации»). Резистор R5 служит для установки пределов измерений индуктивностей, а R6 – емкостей. Для калибровки каскада к клеммам «Сх» и «Общий» на диапазоне 1 кГц подключаем образцовый конденсатор 0.1 мкФ (см. схему на Рисунке 1) и подстроечным резистором R6 устанавливаем стрелку прибора на конечное деление шкалы.

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 2. Модуль измерения емкости и индуктивности.

Затем подключаем конденсаторы, например, емкостью 0.01, 0.022, 0.033, 0.047, 0.056, 0.068 мкФ и делаем соответствующие метки на шкале. После чего таким же образом калибруем шкалу индуктивностей, для чего на этом же диапазоне 1 кГц подключаем к клеммам «Lx» и «Общий» образцовую катушку индуктивностью 10 мГн и подстроечным резистором R5 устанавливаем стрелку на конечное деление шкалы. Впрочем, калибровать прибор можно и на любом другом диапазоне (например, при частоте 100 кГц или 100 Гц), подключая в качестве образцовых соответствующие емкости и индуктивности, согласно выбранному диапазону.

Напряжение питания каскада (Uпит) – 9 В.

Модуль измерения электролитических конденсаторов (+C и ESR)

Модуль представляет собой микрофарадометр, в котором определение емкости производится косвенным образом путем измерения величины напряжения пульсаций на резисторе R3, которое будет меняться обратно пропорционально емкости периодически перезаряжаемого конденсатора. Можно измерять емкости оксидных (электролитических) конденсаторов в диапазонах 10–100, 100–1000 и 1000–10000 мкФ.

Измерительный узел для электролитических конденсаторов собран на транзисторе Т1 (Рисунок 3). На вход (R1) подается сигнал непосредственно с выхода генератора-делителя (схема на Рисунке 1), включать который можно параллельно предыдущему модулю. Резистор R1 подбираем в зависимости от типа использованного транзистора Т1 и чувствительности используемой измерительной головки. Резистор R2 ограничивает ток коллектора транзистора в случае короткого замыкания в проверяемом конденсаторе. В отличие от других модулей, здесь требуется пониженное стабильное питание 1.2 – 1.8 В; схема стабилизатора на такое напряжение будет приведена ниже на Рисунке 6. Следует отметить, что при измерениях полярность подключения конденсатора к клеммам «+Сх» и «Общий» не имеет значения, а измерения можно выполнять, не выпаивая конденсаторы из схемы. Перед началом измерений резистором R4 стрелка устанавливается на нулевую отметку (конец шкалы).

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 3. Модуль измерения ESR и емкости электролитических конденсаторов.

Перед началом измерений (при отсутствии измеряемого конденсатора «+Сх») резистором R4 стрелка устанавливается на нулевую отметку (конечное деление шкалы). Калибровка шкалы «+Сх» может производиться на любом диапазоне. Например, переводим переключатель SA1 в положение, соответствующее частоте 1 кГц. С помощью R4 устанавливаем стрелку прибора на «0» (конец шкалы) и, подключая к клеммам «+Сх» и «Общий» образцовые конденсаторы емкостью 10, 22, 33, 47, 68 и 100 мкФ, делаем соответствующие отметки на шкале. После этого на других диапазонах (10 Гц и 100 Гц) эти же отметки будут соответствовать емкостям с номиналами в 10 и 100 раз бóльшими, то есть, от 100 до 1000 мкФ (100, 220, 330, 470, 680 мкФ) и от 1000 до 10000 мкФ, соответственно. В качестве образцовых здесь можно использовать танталовые оксидно-полупроводниковые конденсаторы, имеющие наиболее стабильные во времени параметры, например, типов К53-1 или К53-6А.

Узел измерения ESR содержит отдельный генератор 100 кГц, собранный на микросхеме 561ЛА7 (ЛЕ5) по такой же схеме, как и основной генератор на Рисунке 1. Здесь особой стабильности не требуется, и частота может быть любой от 80 до 120 кГц. От величины последовательного эквивалентного сопротивления подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора (намотан на ферритовом кольце диаметром 15 – 20 мм). Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше сначала намотать обмотку II, а первичную – поверх нее. Выпрямленное постоянное напряжение после диода VD5 подается на измерительную головку (модуль индикации на Рисунке 4). Диоды VD3, VD4 ограничивают возможные броски напряжений для защиты стрелочной головки от перегрузки. Здесь полярность подключения конденсатора также не важна, и измерения можно проводить непосредственно в схеме.

Пределы измерения можно менять в широких пределах подстроечным резистором R5 – от десятых долей Ома до нескольких Ом. Но при этом следует учитывать влияние сопротивления проводов от клемм «ESR» и «Общий». Они должны быть как можно короче и большого сечения. Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например, рядом с генератором Рисунок 1), возможен срыв генерации узла на микросхеме. Поэтому узел измерения «ESR» лучше собрать на отдельной небольшой плате и поместить в экран (например, из жести), соединенный с общим проводом.

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 4. Структурная схема измерителя.

Для калибровки шкалы «ESR» подключаем к клеммам «ESR» и «Общий» резисторы сопротивлением 0.1, 0.2, 0.5, 1, 2. 3 Ом и делаем соответствующие отметки на шкале. Чувствительность прибора можно регулировать изменением сопротивления подстроечного резистора R5.

Питание измеритель ESR, так же, как и остальные схемы модуля, напряжением 9 В.

Схема соединений модулей прибора

Как видно из Рисунка 4, соединение всех «модулей» не представляет сложности. Модуль индикации включает в себя измерительную головку, зашунтированную конденсатором (100 … 470 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. В зависимости от чувствительности измерительной головки может понадобиться добавочное сопротивление.

Следует иметь в виду, что клемма «Общий» на Рисунке 2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (схема Рисунке 3) при необходимости можно заменить узлом из двух транзисторов меньшей мощности, а в источнике питания 1.4 В можно использовать простой стабилизатор на одном транзисторе. Как это сделать, показано на Рисунках 5 и 6. Функцию стабилитрона здесь выполняют кремниевые диоды VD1-VD3 с суммарным прямым падением напряжения порядка 1.5 В. Включать диоды, в отличие от стабилитрона, нужно в прямом направлении.

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 5. Замена КТ829Г.

При желании можно дополнить прибор модулем для быстрой проверки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причем биполярные транзисторы и, в ряде случаев, полевые, можно проверять без выпаивания их из схемы. Представленная на Рисунке 7 схема представляет собой комбинацию мультивибратора и триггера, где вместо резисторов нагрузки в коллекторные цепи транзисторов мультивибратора включены транзисторы с идентичными параметрами, но противоположной структуры (VT2, VT3). Резисторы R6, R7 задают необходимое напряжение смещения рабочей точки проверяемого транзистора, а R5 ограничивает ток через светодиоды и определяет яркость их свечения.

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 6. Стабилизатор низковольтный.

В зависимости от типа используемых светодиодов, возможно, придется подобрать сопротивление R5, ориентируясь на оптимальную яркость их свечения, или же поставить дополнительный гасящий резистор в цепь питания 9 В. Следует заметить, что эта схема работает с питающим напряжением, начиная от 2 В. Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают. Частоту мигания можно подстраивать, меняя емкости конденсаторов С1 и С2. При подключении к клеммам исправного транзистора один из светодиодов погаснет, в зависимости от типа его проводимости – p-n-p или n-p-n. Если транзистор неисправен, оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание). Помимо клемм «Э», «Б», «К» на самом приборе (клеммная колодка, «фрагмент» панельки под микросхемы и прочее), можно параллельно им вывести из корпуса на проводах соответствующие щупы для проверки транзисторов на платах. При испытаниях полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С».

Универсальный прибор для проверки радиоэлементов из стрелочного тестера
Рисунок 7. Схема для проверки транзисторов.

Следует учесть, что полевые транзисторы или очень мощные биполярные все-таки лучше проверять, выпаяв из платы.

При измерениях номиналов любых элементов непосредственно на плате следует обязательно отключить питание схемы, в которой производятся измерения!

Прибор занимает мало места, умещаясь в корпусе 140×110×40 мм (см. фото справа в начале статьи) и позволяет с достаточной для радиолюбителей точностью проверять практически все основные типы радиокомпонентов, чаще всего используемых на практике. Прибор без нареканий эксплуатируется в течение нескольких лет.

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя
Фрагменты обсуждения (только последние 20 сообщений):Полный вариант обсуждения »
  • Стрелочный прибор (тестер) уже и так вполне самодостаточной инструмент, который позволяет, в отличие от современных мультиметров, определять неисправные элементы схемы без их демонтажа. Возможно это благодаря большому измерительному току омметра некоторых тестеров. Правда, тестеры, в которых подвижная система вращается на растяжках, не столько удобны из-за большей инертности стрелки. На картинке легенда измерительной техники - тестер, изготовленный без использования пластика - "ТЛ-4". [IMG]http://oldoctober.com/files/temp_2/tl_4.jpg[/IMG]
  • То, что это легенда, спору нет. У меня такой же, только уже не такой красивый из-за старости. Его достоинство в виде большого тока головки (100 мкА) весьма сомнительно. Он не позволяет производить измерения в высокоомных цепях и измерять режимы работы полупроводников в слаботочных цепях. Пи измерении сопротивлений его большие напряжения открывают транзисторы, что искажает результаты измерений. Зато им можно проверять светодиоды, чего не может мультиметр.
  • кд522....
  • ну очень сомнительно что это некая "легенда". что тут легендарного если я такую щнягу видел за всю жизнь пару раз. а большинство моих знакомых такого и не видывали.
  • вот как раз поэтому и легенда...те кто видел, знают, что оно существует....
  • всякий хлам записывать в "легенды"? тем более что никто и никогда.... ха-ха-ха...
  • если-бы ты пару раз пользовался, то смысл обсуждать с тобой плюсы и минусы был бы... а так - давай о вкусе устриц поспорим, я правда их никогда не пробовал, но все же....
  • при чем здесь вкус? это вы уважаемый пытаетесь навязать вкусы на предметы которые никто никогда не пробовал ЛЫ-ГЭН-ДА-А-А-А
  • Интересно, а прибор можно использовать по своему назначению после такого "изъятия"? У меня два Ц4353, оба с неисправной головкой. Это два прибора или металлолом?
  • В Цешка всё легко ремонтируется. За исключением микроамперметра. [url]https://yandex.ru/search/?lr=213&msid=1480358939.71558.22870.5270&text=%D1%80%D0%B5%D0%BC%D0%BE%D0%BD%D1%82%20%D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B9%20%D0%B3%D0%BE%D0%BB%D0%BE%D0%B2%D0%BA%D0%B8[/url]
  • фтоппку
  • Почему это не может? Вставляешь светодиод в гнездо для измерения транзисторов PNP, анод в эмиттер - катод в коллектор или в NPN, анод в коллектор - катод в эмиттер, если целый загорится . Или Вы имеете ввиду проверку каких-то других параметров светодиода?
  • Да, если есть функция проверки транзисторов. Но это далеко не у всех мультиметров. По ТЛ-4. У меня есть и Цешки. Но, если бы пришлось выбирать среди них сейчас, то я выбрал бы ТЛ-4. Основное его преимущество - удобная шкала и пределы измерений, кратные 3, что позволяет читать показания без умножения/деления.
  • Не все об этом знают, да и светодиод должен быть с длинными ногами :) А ТЛ-4 это без сомнений легенда жанра, очень удобная шкала и пределы, но понять это могут только советские радиолюбители, которые помнят времена, когда в магазине весь прайс радиодеталей легко умещался на одном листе, а аналогом АлиЭкспресс являлся Посылторг...
  • Всё, пора открывать новую тему, а эту закрывать. Обсуждение выродилось в ностальгические воспоминания участников. Те, кому довелось поработать с приборами, подобными ТЛ-4, Т-1 и т.п., знают, что для понимающего радиолюбителя возможности данных приборов исчерпывающе - достаточны. Их потенциальные возможности ограничены только фантазией радиолюбителя и его способностями. Это прекрасно подтверждает и автор обсуждаемой статьи. С уважением...
  • На стрелочных тестерах еще можно определить "Межвитковое". правда, только в многообмоточных катушках. А еще "Ц-шки и ТЛ" выпускались модерниз. для проверки исправности транзисторов. С уважением Добряк 2.
  • не только для проверки исправности, но и для подбора пар по параметрам...
  • В свое время собрал прибор по схеме из журнала радио 90 г. стр 76. Был доволен полностью. На то время это было отлично. Сейчас пользуюсь китайским Т4 RCL, что в полне удовлетворяет моим запросам в измерениях.
  • ну их между собой как то не очень корректно сравнивать...
  • Эти приборы совершенно разные по функционалу, поэтому их и нельзя сравнивать.
Полный вариант обсуждения »