РадиоЛоцман - Все об электронике

Способы управления яркостью свечения светодиодов с помощью импульсных драйверов

Журнал РАДИОЛОЦМАН, ноябрь 2011

Rich Rosen, National Semiconductor

Введение

Экспоненциальный рост количества светодиодных источников света сопровождается столь же бурным расширением ассортимента интегральных схем, предназначенных для управления питанием светодиодов. Импульсные драйверы светодиодов давно заменили неприемлемые для озабоченного экономией энергии мира прожорливые линейные регуляторы, став для отрасли фактическим стандартом. Любые приложения, от ручного фонарика до информационных табло на стадионах, требуют точного управления стабилизированным током. При этом часто бывает необходимо в реальном времени изменять интенсивность излучения светодиодов. Управление яркостью источников света, и, в частности, светодиодов, называется диммированием. В данной статье излагаются основы теории светодиодов и описываются наиболее популярные методы диммирования с помощью импульсных драйверов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Концепцию яркости видимого сета, испускаемого светодиодом, понять довольно легко. Числовое значение воспринимаемой яркости излучения светодиода может быть легко измерено в единицах поверхностной плотности светового потока, называемых кандела (кд). Суммарная мощность светового излучения светодиода выражается в люменах (лм). Важно понимать, также, что яркость светодиода зависит от средней величины прямого тока.

На Рисунке 1 изображен график зависимости светового потока некоторого светодиода от прямого тока. В области используемых значений прямых токов (IF) график исключительно линеен. Нелинейность начинает проявляться при увеличении IF. При выходе тока за пределы линейного участка эффективность светодиода уменьшается.

 Зависимость светового потока от тока через светодиод
Рисунок 1. Зависимость светового потока от тока через светодиод.

При работе вне линейной области значительная часть подводимой к светодиоду мощности рассеивается в виде тепла. Это потраченное впустую тепло перегружает драйвер светодиода и усложняет тепловой расчет конструкции.

Цветовая температура светодиодов

Цветовая температура является параметром, характеризующим цвет светодиода, и указывается в справочных данных. Цветовая температура конкретного светодиода описывается диапазоном значений и смещается при изменении прямого тока, температуры перехода, а также, по мере старения прибора. Чем ниже цветовая температура светодиода, тем ближе его свечение к красно-желтому цвету, называемому «теплым». Более высоким цветовым температурам соответствуют сине-зеленые цвета, называемые «холодными». Нередко для цветных светодиодов вместо цветовой температуры указывается доминирующая длина волны, которая может смещаться точно также, как цветовая температура.

Способы управления яркостью свечения светодиодов

Существуют два распространенных способа управления яркостью (диммирования) светодиодов в схемах с импульсными драйверами: широтно-импульсная модуляция (ШИМ) и аналоговое регулирование. Оба способа сводятся, в конечном счете, к поддержанию определенного уровня среднего тока через светодиод, или цепочку светодиодов. Ниже мы обсудим различия этих способов, оценим их преимущества и недостатки.

На Рисунке 2 изображена схема импульсного драйвера светодиода в конфигурации понижающего преобразователя напряжения. Напряжение VIN в такой схеме всегда должно превышать сумму напряжений на светодиоде и резисторе RSNS. Ток дросселя целиком протекает через светодиод и резистор RSNS, и регулируется напряжением, подаваемым с резистора на вывод CS. Если напряжение на выводе CS начинает опускаться ниже установленного уровня, коэффициент заполнения импульсов тока, протекающего через L1, светодиод и RSNS увеличивается, вследствие чего увеличивается средний ток светодиода.

Топология понижающего преобразователя
Рисунок 2. Топология понижающего преобразователя.

Аналоговое диммирование

Аналоговое диммирование – это поцикловое управление прямым током светодиода. Проще говоря, это поддержание тока светодиода на постоянном уровне. Аналоговое диммирование выполняется либо регулировкой резистора датчика тока RSNS, либо изменением уровня постоянного напряжения, подаваемого на вывод DIM (или аналогичный вывод) драйвера светодиодов. Оба примера аналогового управления показаны на Рисунке 2.

Аналоговое диммирование регулировкой RSNS

Из Рисунка 2 видно, что при фиксированном опорном напряжении на выводе CS изменение величины RSNS вызывает соответствующее изменение тока светодиода. Если бы было возможно найти потенциометр с сопротивлением менее одного Ома, способный выдержать большие токи светодиода, такой способ диммирования имел бы право на существование.

Аналоговое диммирование с помощью управления напряжением питания через вывод CS

Более сложный способ предполагает прямое поцикловое управление током светодиода с помощью вывода CS. Для этого, в типичном случае, в петлю обратной связи включается источник напряжения, снимаемого с датчика тока светодиода и буферизованного усилителем (Рисунок 2). Для регулировки тока светодиода можно управлять коэффициентом передачи усилителя. В эту схему обратной связи несложно ввести дополнительную функциональность, такую, например, как токовую и температурную защиту.

Недостатком аналогового диммирования является то, что цветовая температура излучаемого света может зависеть от прямого тока светодиода. В тех случаях, когда изменение цвета свечения недопустимо, диммирование светодиода регулированием прямого тока применяться не может.

Диммирование с помощью ШИМ

Диммирование с помощью ШИМ заключается в управлении моментами включения и выключения тока через светодиод, повторяемыми с достаточно высокой частотой, которая, с учетом физиологии человеческого глаза, не должна быть меньше 200 Гц. В противном случае, может проявляться эффект мерцания.

Средний ток через светодиод теперь становится пропорциональным коэффициенту заполнения импульсов и выражается формулой:

IDIM-LED = DDIM × ILED
 

где

IDIM-LED – средний ток через светодиод,
DDIM – коэффициент заполнения импульсов ШИМ,
ILED – номинальный ток светодиода, устанавливаемый выбором величины сопротивления RSNS (см. Рисунок 3).

Двухпроводное ШИМ диммирование
Рисунок 3. Двухпроводное ШИМ диммирование.

Модуляция драйвера светодиодов

Многие современные драйверы светодиодов имеют специальный вход DIM, на который можно подавать ШИМ сигналы в широким диапазоне частот и амплитуд. Вход обеспечивает простой интерфейс со схемами внешней логики, позволяя включать и выключать выход преобразователя без задержек на перезапуск драйвера, не затрагивая при этом работы остальных узлов микросхемы. С помощью выводов разрешения выхода и вспомогательной логики можно реализовать ряд дополнительных функций.

Двухпроводное ШИМ-диммирование

Двухпроводное ШИМ-диммирование приобрело популярность в схемах внутренней подсветки автомобилей. Если напряжение на выводе VINS становится на 70% меньше, чем на VIN (Рисунок 3), работа внутреннего силового MOSFET транзистора запрещается, и ток через светодиод выключается. Недостаток метода заключается в необходимости иметь схему формирователя сигнала ШИМ в источнике питания преобразователя.

Быстрое ШИМ-диммирование с шунтирующим устройством

Запаздывание моментов включения и выключения выхода конвертора ограничивает частоту ШИМ и диапазон изменения коэффициента заполнения. Для решения этой проблемы параллельно светодиоду, или цепочке светодиодов, можно подключить шунтирующее устройство, такое, скажем, как MOSFET транзистор, показанный на Рисунке 4а, позволяющий быстро пустить выходной ток преобразователя в обход светодиода (светодиодов).

Быстрое ШИМ диммирование
а)
Быстрое ШИМ диммирование
б)
Рисунок 4. Быстрое ШИМ диммирование (а), формы токов и напряжений (б).

Ток дросселя на время выключения светодиода остается непрерывным, благодаря чему нарастание и спад тока перестают затягиваться. Теперь время нарастания и спада ограничивается только характеристиками MOSFET транзистора. На Рисунке 4а изображена схема подключения шунтирующего транзистора к светодиоду, управляемому драйвером LM3406, а на Рисунке 4б показаны осциллограммы, иллюстрирующие различие результатов, получаемых при диммировании с использованием вывода DIM (сверху), и при подключении шунтирующего транзистора (внизу). В обоих случаях выходная емкость равнялась 10 нФ. Шунтирующий MOSFET транзистор типа Si3458.

При шунтировании тока светодиодов, управляемых преобразователями со стабилизаций тока, надо учитывать возможность возникновения бросков тока при включении MOSFET транзистора. В семействе драйверов светодиодов LM340x предусмотрено управление временем включения преобразователей, что позволяет решить проблему выбросов. Для сохранения максимальной скорости включения/выключения емкость между выводами светодиода должна быть минимальной.

Существенным недостатком быстрого ШИМ-диммирования, по сравнению с методом модуляции выхода преобразователя, является снижение КПД. При открытом шунтирующем приборе на нем рассеивается мощность, выделяющаяся в виде тепла. Для снижения таких потерь следует выбирать MOSFET транзисторы с минимальным сопротивлением открытого канала RDS-ON.

Многорежимный диммер LM3409

National Semiconductor выпускает уникальный многорежимный драйвер светодиодов LM3409, предназначенный как для аналогового, так и ШИМ регулирования яркости. Диммирование может осуществляться одним из четырех способов:

  1. Аналоговое регулирование прямой подачей напряжения 0 … 1.24 В на вывод IADJ.
  2. Аналоговое регулирование с помощью потенциометра, подключенного между выводом IADJ и «землей».
  3. ШИМ регулирование с помощью вывода EN.
  4. ШИМ регулирование с помощью шунтирующего MOSFET транзистора.

На Рисунке 5 показана схема включения LM3409 для управления яркостью с помощью потенциометра. Внутренний источник тока 5 мкА создает падение напряжения на сопротивлении RADJ, которое, в свою очередь, влияет на внутренний порог схемы измерения тока светодиода. С точно таким же эффектом можно управлять микросхемой, непосредственно подавая постоянное напряжение на вывод IADJ.

Аналоговое управление яркостью
Рисунок 5. Аналоговое управление яркостью.

Рисунок 6 демонстрирует зависимость измеренного тока светодиода от сопротивления включенного между IADJ и «землей» потенциометра. Плато на уровне 1 А в верхней части графика определяется величиной показанного на Рисунке 4 резистора RSNS, задающего максимальный номинальный ток светодиода.

Двухпроводное ШИМ диммирование
Рисунок 6. Зависимость тока светодиода от сопротивления потенциометра.

На Рисунке 7 изображена зависимость измеренного тока светодиода от постоянного напряжения, приложенного к выводу IADJ. Заметим, что максимальный ток здесь также определяется величиной RSNS.

Двухпроводное ШИМ диммирование
Рисунок 7. Зависимость тока светодиода от напряжения на выводе IADJ.

Обе аналоговые технологии диммирования просты в реализации и позволяют с очень высокой линейностью регулировать яркость свечения, вплоть до уровня 10% от максимума.

Заключение

Регулировать яркость свечения светодиодов, питающихся от импульсных преобразователей, можно различными способами. Для каждого из двух основных методов, ШИМ и аналогового, характерны свои достоинства и недостатки. Ценою использования дополнительной логики, ШИМ регулирование значительно уменьшает вариации цвета светодиода при изменении яркости. Схемотехника аналогового диммирования проще, но неприменима там, где требуется поддержания постоянной цветовой температуры.

Перевод: AlexAAN по заказу РадиоЛоцман

На английском языке: Dimming Techniques for Switched-Mode LED Drivers

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя
Фрагменты обсуждения (только последние 20 сообщений):Полный вариант обсуждения »
  • Глаз "инструмент" хороший, но без "численных" значений. Только спектрометр может что-то конкретное показать. Ссылку плиз. И Вы серьёзно верите, что что-то делается за пределами "Китая" (азиатские страны)?
  • Ссылочку, пожалуйста.
  • =Влад-Перм;111436][B]Владимир_007[/B] [B]"Что бы продлить срок службы, рядом с ним ставят (в притык) еще несколько светодиодов,"?[/B] - У меня много светодиодов стоит рядом, чтобы увеличить суммарную яркость........... Я извиняюсь, чисто случайно попал на эту ветку повторно. Номеров 6 - 8 назад в радиолоцмане была статья, где так же вставлял свою реплику. За качество изделий на светодиодах упоминать не скромно, пару журнало назад у автомобилиста была статья на фары - о перегреве светодиода. Так 6 - 8 номеров назад в статье была схемка драйвера, представляющая собой переключатель гирлянд на 4 канала. "благодаря драйверу, увеличиваем срок службы светодиода в 4 раза за счет того, что он работает в 4 раза реже, так же 2_й +, продолжительность работы кристалла диода с графиком по экспоненте увеличивает срок службы за счет уменьшения температуры кристалла" - примерно дословно на память. Что касается фотографирования фар - светодиод, это стробоскоп для человеческого глаза, но с очень большой скоростью переключения и пока ни кто не похвастался увеличением (послесвечения) светодиода после пропадания напряжения.
  • Уважаемый [b]Владимир_666[/b], здравствуйте. С чего Вы это решили? При питании светодиода постоянным током формируется непрерывный поток светового излучения. При питании импульсным током - формируются световые импульсы. Светодиод [B]безынерционен[/B]. Это его замечательное свойство широко используется при передаче цифровой информации по оптическому волокну со скоростью десятки Гигабайт в секунду и более. Для него и люминофор нужен соответствующий, не создающий послесвечения. Полагаю, Вы это прекрасно понимаете. Говоря про стробоскоп Вы, очевидно, имеете ввиду отдельные кванты света. Но их пока не научились использовать по отдельности. Непонятно, кто и за что поставил "минус"?
  • [b]САТИР[/b], Вы отчасти травы в том, что [I] Светодиод безинерционен[/I]. Это справедливо для светодиодов с "голым" кристаллом. Белые светодиоды разрабатываемые для освещения имеют слой люминофора. А он имеет некоторое время послесвечения (несколько миллисекунд), что вполне достаточно при питании импульсами с частотой в килогерцы. Кроме того, в драйверах устанавливается фильтрующий конденсатор.
  • Уважаемый [b]lllll[/b], здравствуйте. Совершенно с Вами, абсолютно. Согласитесь, ведь люминофор лишь принадлежность самого светодиода для придания ему нужных свойств.
  • Добрый день. Под словом стробоскоп с большой частотой - я подразумевал именно стробоскоп. Если взять свечение обычной лампочки у которой максимальное напряжение 220В и минимальное 0 и это с частотой 50 Гц - температура нити при 220В - 2200 градусов, но когда напряжение падает до 0 и опять поднимается до 220В, температура нити не падает до 0, а опускается до 1500 - 1800 градусов, что мы и видим "не вооружонным глазом". Что касается светодиода - у них принцип работы - стробоскоп, с большой скоростью переключения, который не видно человеческим глазом, но это не говорит о не влиянии на зрение. Что касается передачи данных гигпбайты в секунду - обычно передачу данных передают (азбукой морзе, мигающей лампочкой), я понимаю, что бы человеку поставить (-), можно быть и тупым, если Вы по отзывам людей считаете себя так же умным - определитесь сами где у Вас постоянно горящая лампочка и кому из нас нужно ставить -.
  • Ну как-бы 50 Гц. это две полу синусоиды и реально моргают 100 Гц. и напряжение амплитудное около 300 В. Кто Вам такое сказал? Или где Вы это прочитали? О принципе работы почитайте в "Вике", а тема вроде о питании светодиодов. Нормальный драйвер питает светодиод постоянным таком. ШИМ регуляторы применяются только если надо ДЁШЕВО уменьшить яркость свечения. Хороший драйвер, опять же, умеет уменьшать ток на светодиод без использования ШИМ. ШИМ применяют в фонариках многорежимных - и если драйвер хоть немного адекватный частота ШИМ от нескольких кГц. Совсем незаметно при любом использовании. Ага, у меня тоже, когда винчестер данные передаёт, "лампочка" (светодиод) мигает, быстро так мигает! Это она данные передаёт!
  • Не трогайте Владимира666. Не понимает он как работает светодиод. И, очевидно, не поймет. Придумал для себя объяснение неправильное и толкает его всем налево и на право.
  • Всё выше сказанное - с точностью "до наоборот"
  • ctc655 я думаю я Вам в понятной форме расписал, что постоянно горящая лампочка не может передавать информацию, если Вы пытаетесь своими действиями [B]не профессиональными[/B] защитить производителей светодиодов со своей минусовкой
  • Спасибо Владимир666. Мое мнение о вас не улучшилось. Увы. Еще в детстве, лет 38 назад делали светотелефон на ЛАМПОЧКЕ. Запитана была от постоянного тока. Работало. Информацию передавал. Другое дело с какой скоростью, если можно так сказать. А вот ваше представление о работе светодиода - бред. То он у вас разрядник, то стробоскоп. Молодеж почитает и потом начнет говорить чушь. Если тяжело понять, не лезьте. За это и получили -1. Это оценка информативности сообщения. ВАаши сообщения не только не несут информативности, но еще и дают ошибочное представление о теме. Там где нет такой большой ахинеи, я ничего не ставлю.
  • Просмотрите тему на этом же сате, что бы было понятно почему повторно! [URL]http://www.rlocman.ru/forum/showthread.php?p=199007#post199007[/URL] Обсуждение: Осветительные приборы на основе светодиодов переменного тока находят свою нишу и, возможно, выйдут за ее пределы Мне так же не 10 и не 30 лет, но Вам почитать будет полезно. Увеличить знания кроме высокотехнологичного прибора с р-п переходом. Интересно, как же Вы 30 лет назад лампочкой горящей на постоянном токе инфорсацию передавали? Все световые приборы, не важно - оптрон, оптотиристор и т.д. все работают за счет прерываний светового потока. Наверно специально патент для этого создали?
  • Обоснуйте или подтвердите. Я "электронщик" - можете не ограничиваться в терминологии. То, что драйвер (питание от 220 В.) работает по схеме АС (220 В.) -- DC (300 В.) -- AC ШИМ -- DC (стабильный нужный ток СС) -- СС на светодиод, не делает его ШИМ регулятором. (это можно назвать и просто выпрямителем напряжения!) ШИМ с обратной связью это просто один из способов выдерживать стабильную яркость (ток) светодиода. А вот регулировать яркость можно двумя способами: в указанной цепочке в "АС ШИМ" дополнительно ввести регулировку "заполнения" (светодиод будет питаться регулируемым стабильным током) или регулировать ШИМ-ом уже непосредственно [B]средний[/B] ток на светик. В первом случае питается стабильным током (пульсации нет!) во втором случае светодиод питается "импульсами" и их в принципе видно. (не обязательно глазами - в фонариках встречал частоту и 200 Гц. и 9 кГц.) Азбукой "Морзе" - это что-ли не передача информации?
  • Честно говоря я не знаю зачем подтверждать известную истину. Может, конечно, есть какие то нюансы в разработке регулируемых драйверов( а они должны быть). Я не занимался пока этим. Поэтому предложенные вами методы регулирования имеют право на жизнь. Вот только применяются каждый по своему. По поводу азбуки Морзе. Да, это передача информации, но с перерывом светового потока. А тот светотелефон работал на изменении яркости лампочки без погасания. При отсутствии речи светил постоянно. Схему не нашел. Делали в кружке и еще не было привычки зарисовывать схемы. Также некоторые закрытые оптопары , резисторная например, может работать без прерывания светового потока.
  • Уважаемый [b]ctc655[/b], здравствуйте. [B]Вы абсолютно правы[/B]. Подобный метод передачи звука применяется до сих пор в кино. По краю плёнки есть световая дорожка, модулирующая световой поток, который преобразуется в электрический сигнал. Метод существует со времени изобретения звукового кино! Именно он погубил тапёров.
  • Про это как то и забыл. Хотя может сейчас по другому. Честно давно не интересовался кино.
  • Я не спорю, что без погасания лампочки и схемы могут быть разные, от обычной логики до 554СА..(3) компараторов, можно и просто свечение лампочки и перед лампочкой "флажком" дергать, но передача сигнала всегда работала по изменению "1" и "0".
  • В цифровых устройствах - да. А датчики уровня освещённости что, тоже работают по погасанию лампочки или солнца? Причём уровень освещённости регулируется......
  • Предыдущая тема или спор, если Вы читали - была о передаче данных "якобы постонно горящей лампочкой" от источника постоянного тока, то есть аккумулятор или стабилизированный источник питания. (Не хочу поднимать тему - где же заканчивается переменное напряжение и начинается постоянное, так как на эту тему сейчас в нете куча споров, начиная с самого аккумулятора.....) Что касается уровня освещенности, Вы о датчиках движения или о ночном освещении допустим вокруг витрин магазинов? Кажется во 1_х свет в обычном понятии - немного не соответствует теме, а вот принцип практически тот же!
Полный вариант обсуждения »