РадиоЛоцман - Все об электронике

Интерфейсы, работающие на основе технологии «Touch'n'touch»

Microchip MCP602

Любым техническим устройством, без которых жизнь в современном мире кажется уже невозможной, мы управляем посредством физических интерфейсов. И если многообразие самих устройств уже не поддается учету, то интерфейсы при сравнении окажутся, в принципе, удивительно однообразными. Все они (если не учитывать устройства отображения информации) состоят из стандартных элементов (манипуляторов). Это кнопки, рычаги, различные ползунки, «крутилки» и «возилки» (мышки, сенсорные пэды и экраны).

Вебинар «Особенности применения литиевых батареек Fanso (EVE) в популярных решениях» (30.11.2021)

Так вот, все существующие манипуляторы построены на принципе отслеживания движения точки в рабочем пространстве. Примером элементарного линейного манипулятора может служить обыкновенный переменный резистор, где вдоль линейного проводника (размерность равна 1) перемещается «точечный» ползунок (размерность 0). Итоговая размерность манипулятора 1 + 0 = 1.

Перейдем к плоскостным манипуляторам, самые распространенные из которых – компьютерные мышь и тачпэд (тачскрин). Здесь по рабочей плоскости (размерность равна 2), в случае мыши – это коврик, а в случае тачпэда (тачскрина) – его сенсорная поверхность, перемещается точечный объект (размерность 0) – чувствительный элемент мыши или точка соприкосновения стилуса (пальца) и сенсорной поверхности. Не вдаваясь в подробности конструкции конкретных устройств, можно сказать, что формула размерности манипулятора в этом случае 2 + 0 = 2.

Гораздо менее распространены 3D-манипупуляторы, где рабочее пространство трехмерно, а перемещается в нем, опять же, «точечный» объект, например, рабочий конец рукоятки 3D-джойстика. В этом случае справедлива формула 3 + 0 = 3. Интенсивно разрабатываемые в последнее время пространственные интерфейсы с видеозахватом движений тоже можно отнести к этому классу.

Но почему бы, например, не разложить рабочее пространство 2D-манипулятора таким образом: 2 = 1 + 1 и перемещать один линейный элемент относительно другого, неподвижного?

Соответственно принципу относительности (не путать с теорией относительности ), точка пересечения этих элементов будет перемещаться по плоскости, осями координат которой и будут являться элементы.

На практике самым простой реализацией интерфейса 1 + 1 = 2 будет система из двух линейных проводников, один из которых подвижен относительно второго. Я назвал эту систему 2D-реохордом.

Если помните из школьного курса физики, на заре электротехники, еще во времена Эдисона, применялся такой прибор – реохорд. Он состоит из проволоки высокого удельного сопротивления и скользящего по нему контакта (второй контакт закреплен на одном из концов проволоки). То есть, это – прадедушка самого распространенного в наше время электрорегулятора – переменного резистора (дедушка – реостат, где провод намотан на каркас).

Так вот, идея до смешного проста: берем два провода, один из которых закреплен, второй – подвижен. Получаем реохорд в квадрате: относительно каждого провода второй служит скользящим контактом. «Струна» и «смычок» служат осями координат общей для них плоскости. Все отличие от имеющихся решений в области 2D манипуляторов (самый распространенный – планшет) – перемещающийся объект привязан к началу координат, а оси движутся относительно него. Что, принимая во внимание принцип относительности, одно и то же.

Посредством 2D-Реохорда мы будем иметь возможность плавно манипулировать двумя параметрами управляемого прибора.

Упрощенная схема 2D-Реохорда представлена на Рисунке 1.

Упрощенная схема 2D-Реохорда.
Рисунок 1. Упрощенная схема 2D-Реохорда.

При включении устройства во время отсутствия контакта в точке «а» по схеме на Рисунке 1 на выходах ОУ устанавливается напряжение, близкое к 0 В. Затем при создании контакта в точке «а» (соприкосновение подвижной струны Rc-d и неподвижной струны на корпусе Rc-d) по цепи VC – Rс-а – Ra-е начинает протекать электрический ток, сила которого определяется источником стабильного тока І1. На инвертирующий вход DA1.1 поступает напряжение

U1 = І1 × Ra-е,

на неинвертирующий вход

U2 = І1 × (Rс-а + Ra-е),

а результирующее выходное напряжение

OUT1 = K1 × І1 × Rс-а,

где K1 – коэффициент усиления DA1.1.

На неинвертирующий вход DA1.2 поступает напряжение

U1 = І1 × Ra-е,

а результирующее выходное напряжение

OUT2 = K2 × І1 × Ra-е,

где K2 – коэффициент усиления DA1.2. Таким образом, выходное напряжение на OUT1 прямо пропорционально длине участка (с-а) подвижной струны, а на OUT2 – прямо пропорционально длине участка (а-е) неподвижной струны.

Для упрощения конструкции устройства, а именно «смычка», можно видоизменить схему в соответствии с Рисунком 2, при этом подвижная струна соединяется с устройством только одним проводом, но в холостом режиме DA1.1 будет входить в насыщение, и в результате, как показала практика, труднее будет бороться с последствиями дребезга контакта в точке «а», который, к сожалению, неизбежен.

Упрощенная схема 2D-Реохорда с подключением «смычка» одножильным проводом.
Рисунок 2. Упрощенная схема 2D-Реохорда с подключением
«смычка» одножильным проводом.

По этой же причине нежелательно значительно снижать силу тока источника I1; оптимальным мне показалось значение 10 – 25 мА, хотя это зависит от конкретных условий.

Полная принципиальная схема 2D-Реохорда приведена на Рисунке 3. В качестве струн использовались отрезки нихромовых проводов диаметром 0.2 – 0.3 мм и длиной 200 – 500 мм. ОУ выбраны низковольтные, rail-to-rail как по входу, так и по выходу. В первых опытных приборах использовались обычные ОУ, но при этом схема неоправданно усложнялась. VR2 служит для подстройки усиления усилителя постоянного тока на DA1.2, а VR1 – для общего масштабирования путем регулировки силы тока источника тока на транзисторе Q1. Конденсаторы С2, С3, С4 сглаживают дребезг контакта.

Полная принципиальная схема 2D-Реохорда.
Рисунок 3. Полная принципиальная схема 2D-Реохорда.

Практическое применение 2D-Реохорд нашел в конструкции ЭМИ «Rheolin» («Реолончель»), где 2D-Реохорд подключен к MIDI-USB контроллеру, собранному на Arduino-micro. Процесс звукоизвлечения можно посмотреть на Видеоролике 1.

На Видеоролике 2 демонстрируется трехструнный вариант Реолончели.

Теоретически возможны конфигурации N-размерных интерфейсов по формулам 1 + 1 + 1 = 3, 2 + 1 = 3. (Кстати, попробуйте представить и изобразить, как они будут выглядеть – это будет неплохая разминка для пространственного воображения ).

Но мы эти этапы перепрыгнем, и поиграем с конфигурацией… 2 + 2 = 4. Да-да, будем работать в 4-мерном пространстве! Правда, пространство это будет виртуальное, и, если мы планируем, например, управлять перемещением реального объекта, четвертый параметр можно будет использовать, скажем, для управления вращением в какой-либо плоскости.

Наиболее перспективной моделью 4D- и даже 5D-манипулятора, как мне представляется, будет 5D-мышь (Видеоролик 3).

4D-конроллер мне представлялся делом далекого будущего: изготовить выпуклую сенсорную поверхность – операция не для кустарных условий домашней мастерской. Но как-то наткнулся на описание гибких пленочных сенсоров, и, как оказалось, они были доступны для заказов на Амазоне.

Конечно, с помощью гибких сенсоров 4D-мышь не соорудишь, но, выгнув оба сенсора, придав им «полуцилиндрическую» форму, можно достигнуть того же результата – при непараллельном взаиморасположении сенсоров при соприкосновении возникает точечный контакт. То есть, система из двух цилиндрических поверхностей топологически эквивалентна системе из сферической и плоской поверхностей.

В результате экспериментов была выбрана оптимальная кривизна сенсорных поверхностей (при малой кривизне точка контакта превращалась в контактное пятно, и точность позиционирования недопустимо падала, а большая кривизна приводила к ложным срабатываниям без контакта).

Полная принципиальная схема 2D-Реохорда.
Рисунок 4. Общий вид «компромиссной модели» 4D-манипулятора.

На Видеоролике 4 можно наблюдать процесс управления виртуальным объектом (кубом) в пространстве с помощью 4D-манипулятора. Конечно, в таком виде 4D-манипулятор существенно менее удобен, чем гипотетическая 4D-мышь. Но, даже просто уменьшив размеры сенсоров, особенно подвижного, получаем эргономически более приемлемые модели (Рисунки 4 и 5).

Общий вид 4D-манипулятора с ковриком минимального размера.
Рисунок 5. Общий вид 4D-манипулятора с ковриком минимального размера.

На Видеоролике 5 можно посмотреть использование 4D-манипулятора компромиссной конфигурации в 2D-графике. «Лишние» размерности отвечают за размер и цвет кисти. А гипотетический вариант специализированного графического 4D-манипулятора (4D-кисть для планшета) представлен Видеороликом 6.

Загрузка видеороликов

  1. Реолончель (Rheolin) в режиме имитации Терменвокса
  2. Трехструнный вариант Реолончели
  3. 5D-мышь. Сенсорные поверхности расположены как на коврике, так и на рабочей (нижней) поверхности мыши
  4. Процесс управления виртуальным объектом (кубом) в пространстве с помощью 4D-манипулятора
  5. Применение 4D-манипулятора в 2D-графике
  6. Гипотетический вариант специализированного графического 4D-манипулятора

Материалы по теме

  1. Datasheet Microchip MCP602

Изготовление 1-4 слойных печатных плат за $2

54 предложений от 31 поставщиков
Исполнение: TSSOP-8L. IC OPAMP DUAL SNGL SUPPLY 8TSSOP Корпус : TSSOP-8 Тип ОУ : Стандартный Особенности : Rail-to-Rail Количество ОУ в...
AliExpress
Весь мир
1 шт. MCP6547-I/SN MCP6042-I/SN MCP602-I/SN MCP6022-I/SN MCP6021-I/SN MCP601-I/SN MCP6002-I/SN MCP4921-E/SN SOP-8
8,66 ₽
MCP602T-I/SN
Microchip
8,84 ₽
MCP602T-I/SN
Microchip
от 29,80 ₽
MCP602T-I
Microchip
от 46,26 ₽
Запись вебинара «Микросхемы для защиты цепей питания: ограничители всплесков напряжения и тока, контроллеры горячей замены, идеальные диоды»
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя