KEEN SIDE успешно заменяет аналогичные продукты таких известных брендов, как Phoenix Contact, Weidmueller, Degson, Winstar, Hsuan Mao, KLS, G-NOR, Mean Well и др.
РадиоЛоцман - Все об электронике

Наблюдения за поведением температуры при заряде и разряде Li-Ion аккумуляторов

Благодаря своей высокой удельной емкости, литий-ионные аккумуляторы постепенно вытесняют свинцовые (SLA) и никель-металл-гидридные (NiMH) из многих стационарных и портативных приложений. Но, по мере создания более мощных литиевых аккумуляторов, все острее встает вопрос управления потоками тепла при заряде и разряде.

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Повышение температуры в литий-ионных аккумуляторах всегда было основной проблемой для конструкторов. Для большинства литий-ионных аккумуляторов предельная температура в режиме заряда установлена равной 45 °C, а в режиме разряда – 60 °C. Эти границы можно сдвинуть немого вверх, но ценой будет уменьшение срока службы аккумуляторов. А в худшем случае это может привести к повреждению, или даже воспламенению элементов аккумулятора. Новые аккумуляторы на основе LiFePO4 обещают расширить границы предельных температур заряда и разряда, но ограничения все равно останутся.

Вызывающая нагрев литий-ионных аккумуляторов энергия имеет несколько источников. Во время, как заряда, так и разряда, компоненты электронных схем, расположенные вблизи аккумулятора, отдают тепло в его элементы. Это особенно существенно во время заряда, так как заряд обычно осуществляется от импульсного источника питания с контроллером, который реализует алгоритм CC/CV (заряд постоянным током/постоянным напряжением). Не менее 10% энергии источника питания теряется в виде тепла, которое различными путями, в частности через выводы, передается в аккумулятор. В некоторых схемах заряда КПД не превышает 70%.

Другими источниками тепла являются схемы защиты аккумулятора и указателей уровня заряда. К таким источникам тепла относятся термисторы с положительным температурным коэффициентом (PTC), термопредохранители (TCO – thermal cutoff fuse), электронные предохранители, MOSFET первичной защиты и токовый шунт указателей уровня заряда (Рис. 1). При больших токах нельзя не учитывать и сопротивление никелевых полосок, соединяющих элементы аккумуляторной батареи.

Наблюдения за поведением температуры при заряде и разряде Li-Ion аккумуляторов
Рис. 1. Источниками тепла внутри аккумулятора являются термистор и термовыключатель, электронный предохранитель, MOSFET в схеме первичной защиты, и токоизмерительный шунт в измерителе уровня заряда.

Надписи на рисунке
Overcurrent Перегрузка по току
Overtemperature Перегрев
PTC Термистор
TCO Термовыключатель
Secondary safety Вторичная защита
Non-resistable fuse Нерезистивный предохранитель
Overvoltage protection Защита от повышенного напряжения
Overvoltage Повышенное напряжение
Undervoltage Пониженное напряжение
Unbalance Разбаланс
Protection MPSFETs MOSFET транзисторы защиты
Balancing and primary safеty Балансировка и первичная защита
Shunt Шунт
Capacity and status Емкость и статус
Gas gauge Измеритель уровня заряда

Большинство компонентов, через которые проходит ток, имеют резистивный характер. Выделяемое компонентом тепло пропорционально квадрату протекающего через него тока (P = R·I2). При небольших (менее 1 А) токах заряда/разряда на сопротивлениях включенного защитного MOSFET транзистора и токового шунта тепла выделяется немного. Но при больших токах эти сопротивления становятся определяющими. Совсем нередко Li-Ion аккумуляторы отдают ток 10 А, а заряжаются током 5 А. При таких токах даже самое незначительное сопротивление может за несколько часов заряда или разряда внести существенный вклад в повышение температуры аккумулятора.

Взгляд на элементы аккумулятора

Источники тепла, не относящиеся к электронным компонентам, часто не принимают во внимание. Между тем, обладают сопротивлением внутреннее устройство защиты от перегрузки, анод и катод, и через них так же протекает ток, вызванный химическими реакциями в элементах батареи.

Для большинства Li-Ion аккумуляторов производители указывают внутренне сопротивление в диапазоне от 80 до 100 мОм. Это сопротивление может быть серьезным источником тепла, когда заряд и разряд производятся максимальными токами. Сейчас на рынок поставляются аккумуляторы с максимальным током разряда 10C … 20C. (1C – ток, численно равный емкости аккумулятора в А·ч, например для аккумулятора 2400 мА·ч, 1C = 2.4 А). Конечно, тока 20C аккумулятор долго не выдержит, но и за короткое время его температура может повыситься очень сильно.

Почти полностью игнорируются химические реакции в элементах аккумуляторной батареи. Реакция, которая происходит во время заряда ячейки литий-ионной батареи, является эндотермической, т.е., она поглощает тепло. Но в термодинамике не бывает бесплатных обедов, и при разряде тепло выделяется. В 1995 году в Центральном научно-исследовательском институте электроэнергетики (CRIEPI) с помощью калориметра провели классические исследования химических реакций в Li-Ion аккумуляторах. Рисунок 2 взят из доклада, составленного по результатам этих исследований (см. http://criepi.denken.or.jp/en/e_publication/a1996/96seika29.html).

Наблюдения за поведением температуры при заряде и разряде Li-Ion аккумуляторов
Рис. 2. Реакция, происходящая при заряде Li-Ion аккумуляторов, является эндотермической (A), а при разряде – экзотермической. Обратите внимание, что на последнем этапе разряда выделение температуры резко увеличивается, сигнализируя о быстром росте выходного сопротивления аккумулятора перед наступлением полного разряда.

Надписи на рисунке
Charge Заряд
Discharge Разряд
Voltage (V) Напряжение (В)
Cell voltage Напряжение на ячейке аккумулятора
Heat flow (mW) Тепловой поток (мВт)
Time (hours) Время (час)

На графике тепловые потоки показаны на фоне цикла заряда одиночного Li-Ion элемента, и следующего за ним цикла разряда. Обозначенный буквой «A», начальный участок графика иллюстрирует эндотермическую природу химической реакции заряда. Область разряда, отмеченная буквой «B», совершенно очевидно, имеет экзотермический характер. Но что интересно, вблизи конца области разряда скорость выделения тепла резко возрастает, что указывает на быстрое увеличение внутреннего сопротивления элемента перед полным разрядом. (Заметим, что заряд и разряд в этих экспериментах выполнялись постоянным током).

Эндотермическая составляющая происходящих в аккумуляторе химических процессов весьма незначительна по сравнению с остальными источниками тепла. В любом случае, преобладающим будет влияние элементов, выделяющих тепло, и температура аккумулятора при заряде будет повышаться.

Строго экзотермический характер химической реакции при разряде может вызвать сильный нагрев аккумулятора в конце разряда. Это усугубляется тем, что мощность, забираемая от аккумулятора, как правило, постоянна, и для поддержания постоянной мощности ток в конце разряда должен увеличиваться. При этом все резистивные составляющие элемента батареи начинают выделять еще больше тепла.

Аспекты конструирования

Надлежащим образом сконструированная аккумуляторная батарея должна содержать устройство защиты от перегрева. В большинстве схем первичной и вторичной защиты литий-ионных аккумуляторов содержатся MOSFET транзисторы, которые открываются, если температура становится слишком высокой (или, если нужно, слишком низкой). Как показано на Рис. 1, некоторые первичные и вторичные схемы защиты могут открывать электронные предохранители. Это происходит лишь в крайнем случае, так как подобные предохранители не могут самовосстанавливаться, и открывшись, отключают батарею аккумуляторов.

При конструировании литий ионных аккумуляторов для больших токов нагрузки необходимо принимать во внимание множество факторов. Следует предусмотреть отвод тепла от резистивных элементов электронной схемы, и от самих элементов батареи. При очень больших токах, характерных, например, для аккумуляторов транспортных средств, может потребоваться воздушное, а может быть, и жидкостное охлаждение аккумуляторов.

Для уменьшения разогрева самих аккумуляторов, разработчики соединяют в батарею несколько элементов параллельно, снижая, таким образом, ток через каждый элемент. Но это порождает и проблему, связанную с разбросом параметров элементов, из-за чего ток может течь из одного элемента в другой. Проблема решается установкой в батарею дополнительных PTC термисторов, что усложняет и удорожает аккумулятор.

Литий-ионные аккумуляторы становятся все мощнее и занимают ниши, в которых раньше доминировали свинцовые и никелевые аккумуляторы. Это требует все более серьезного отношения разработчиков аккумуляторов к вопросам выделения тепла. Следствием игнорирования этих вопросов будет, как минимум, плохая батарея, а в худшем случае, небезопасная и ненадежная.

Литература

  1. Use Cell Balancing To Enable Large-Scale Li-ion Batteries (Использование балансировки элементов в мощных Li-Ion аккумуляторах)
  2. Changes To IEEE 1625 Establish A High Bar For Battery Design (Изменения в стандарте IEEE 1625 поднимают планку проектирования аккумуляторов)
  3. Mind Your Thermal Management To Improve Reliability (Для повышения надежности не забывайте о контроле температуры)

electronicdesign.com

Перевод: AlexAAN по заказу РадиоЛоцман

На английском языке: Keep An Eye On Temperature Trends During Li-ion Battery Charge And Discharge Cycles

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя