Журнал РАДИОЛОЦМАН, ноябрь 2014
Владимир Рентюк, Запорожье, Украина
Выше были рассмотрены, скажем так, типовые схемы, прототипы которых можно легко найти в Интернете. Но иногда перед разработчиками устройств с коллекторными двигателями могут стоять совершено иные, и куда более сложные задачи. Например, необходимо осуществить управление прецизионной переменной нагрузкой, не допускающей рывков и чувствительной к остановке и пуску двигателя. Особенно остро эта проблема стоит при использовании малоинерционных двигателей, то есть миниатюрных двигателей с малой собственной массой ротора. Простая подача некоторого фиксированного напряжения на такой двигатель приводит к его мгновенному старту и рывку. Один из вариантов решения такой проблемы, использованный автором статьи в серийном, разработанном им изделии, представлен на Рисунке 8.
Рисунок 8. | Схема управления для маломощных двигателей, работающих на нагрузку с переменным моментом. |
Схема представляет собой регулятор напряжения с ограничением по току, то есть имеет падающую выходную характеристику – зависимость выходного напряжения от тока, потребляемого двигателем. Выходное напряжение регулятора при номинальной нагрузке двигателя задается делителем R6, R8, и для варианта, приведенного на Рисунке 8, может быть установлено в пределах от 10.8 В до 2.3 В. Первичная характеристика управления ограничением по току задается номиналом сопротивления R3 и устанавливается подстроечным резистором R4 (с учетом резистора R5). Максимальный выходной ток может быть с приемлемой точностью рассчитан по формуле
где 6.6 – это максимальное напряжение на эмиттере транзистора VT1 регулятора в режиме короткого замыкания в нагрузке. В приведенной схеме, в отличие от остальных схем регуляторов, напряжение в режиме короткого замыкания мало зависит от установленного выходного напряжения. Здесь реальный максимальный выходной ток равен примерно 3.3 А, а минимальный ток ограничения равен приблизительно 40 мА. Как можно видеть, диапазон регулировки тока достаточно широк, что не под силу многим другим схемам регуляторов, в которых нет внутреннего усилителя, дополняющего токовый сенсор. Ток ограничения в среднем положении ротора подстроечного резистора R4 лежит на уровне 340 мА во всем диапазоне выходных напряжений при изменении питающего регулятор напряжения от 9 В до 15 В. Максимальный ток достигается в левом положении движка (по Рисунку 8), минимальный – в правом. Как уже упоминалось, выходное напряжение, а, следовательно, и скорость вращения двигателя при минимальной нагрузке ротора, устанавливается подстроечным резистором R8 («Скорость вращения»), а подстройка необходимого уровня ограничения по току осуществляется подстроечным резистором R4 («Ток»). Схема с точностью не хуже 2% удерживает выходное напряжение на заданном уровне до достижения 65% нагрузки (максимального выходного тока, установленного резистором R4). Далее напряжение на двигателе начинает плавно уменьшаться, тем самым, ограничивая развиваемый им момент.
При включении схемы (из-за ограничения тока и, следовательно, момента) рывка в управлении внешней нагрузкой не происходит. После разгона двигатель переходит в стационарный режим с током потребления ниже установленного схемой ограничения. При увеличении нагрузки двигателя более установленного уровня выходной ток регулятора ограничивается на заданном уровне, а напряжение на двигателе уменьшается, и при закорачивании ротора, то есть при полной остановке, становится равным падению напряжения на активном сопротивлении обмотки ротора при заданном максимальном выходном токе. График, показывающий изменение мощности двигателя в зависимости от тока нагрузки, приведен на Рисунке 9.
Рисунок 9. | Графики зависимости мощности и напряжения на двигателе от нагрузки при токе ограничения 200 мА. |
Как видно из графика, мощность, в случае если нагрузка на двигатель превышает 70%, начинает ограничиваться и плавно уменьшаться. При принудительной остановке двигателя она составит всего 12% от максимально установленной, тем самым, защищая двигатель от перегрузки. Ток ограничения регулятора рекомендуется выбирать на 20-25% выше номинального рабочего тока в заданном режиме эксплуатации при минимально допустимом рабочем напряжении двигателя. При проектировании необходимо учитывать мощность, рассеиваемую на регулирующем транзисторе VT1. (Возможно, потребуется радиатор). У читателя может возникнуть законный вопрос. Зачем так сложно, когда можно просто? То есть использовать вариант, представленный на Рисунке 3 с ограничением тока. Чтобы развеять сомнения и снять вопросы, на Рисунке 10 показан график зависимостей для схем, приведенных на Рисунке 2 в аналогичных условиях. Заметна разница? При этом учтите, что напряжение холостого хода будет не 5 В, а 6.4 В, и схема уже не будет стабилизатором напряжения. Токоограничивающий резистор будет иметь сопротивление на уровне 6 Ом, и об оперативной подстройке тока можно будет забыть.
Рисунок 10. | Графики зависимости мощности и напряжения на двигателе от нагрузки при токе ограничения 200 мА для варианта схемы на Рисунке 2. |
Кроме особенностей схемы, описанных выше, данное решение не только предохраняет нагрузку, но и продлевает срок службы самого двигателя. А в отличие от вариантов с использованием ШИМ, такое решение практически не оказывает дополнительного влияния на общий уровень электромагнитных и радиопомех устройства в целом.
А что делать в случае, когда необходимо иметь управление относительно мощным коллекторным двигателем, который управляет массивной инерционной нагрузкой, требующей достаточно точного позиционирования при ее остановке и, главное, реверса. Заметьте, все предыдущие и широко распространенные схемы ни остановку с фиксацией ротора, ни реверс не обеспечивают. В лучшем случае реверс осуществляется при помощи механического переключателя [3]. Удобное и, главное, гибкое решение для решения данной задачи, выполненное на драйвере шагового двигателя мостового типа, представлено на Рисунке 11.
Рисунок 11. | Схема управления с реверсом для мощных двигателей, работающих на инерционную нагрузку. |
Для выбора направления вращения двигателя служит тумблер S1, а индикация наличия питания и направление вращения указываются двуцветным светодиодным индикатором HL1. Собственно включение двигателя осуществляется кнопкой ON. Основой схемы является микросхема драйвера LMD18245T обычно используемого для шаговых двигателей [7]. Подробно особенности данной ИМС и пример ее использования по назначению приведены в [1].
Максимальный ток драйвера задается резистором, включенным в цепь контакта 13 (резистор R4 на Рисунке 11), и двоичным кодом на контактах цепи управления выходным током (выводы 8, 7, 6, 4). Для облегчения выбора установок в спецификации [7] имеется формула и таблица. Ограничение тока осуществляется таким образом, что для большинства применений нет надобности в охлаждающем радиаторе. При включении ключи выбранных плеч моста полностью открыты, а при достижении максимальной (заданной по входам «М») величины тока осуществляется его «нарезка» (так называемый чоппинг – «chopping»). Эта «нарезка» не является неким подобием ШИМ, и осуществляется с заданной пользователем частотой. Частота «нарезки» задается параллельной RC цепочкой, подключенной к выводу 3 драйвера (элементы R5, C6). Выходной каскад LMD18245T содержит все необходимые защитные элементы – быстродействующие диоды, установленные параллельно выходным ключам. Реверс выполняется подачей логической единицы переключателем «Направление вращения». Кроме того, эта ИМС позволяет легко осуществлять и режим принудительного торможения двигателя в момент остановки. Это достигается замыканием обмотки ротора двигателя. Остановка с торможением реализуется подачей логической единицы на вывод 10 (вход BRAKE), вследствие чего обмотка двигателя закорачивается внутренними ключами драйвера. Представленное на Рисунке 11 решение не документировано в спецификации [7], но оно весьма удобное, и за все время его использования отказов или сбоев не наблюдалось.
Рисунок 12. | Приводной поворотный узел. |
Для питания изображенной на Рисунке 11 схемы можно использовать любой источник напряжения постоянного тока, рассчитанный на ток не менее 2 А, с выходным напряжением 12 В. (Внешний контакт цилиндрического разъема должен быть минусом, внутренний – плюсом). Кажущимся недостатком схемы является относительная дороговизна ИМС LMD18245T. Но если сравнивать это решение с «традиционными», то проигрыш в стоимости окажется несущественным, а в ряде случаев (простота управления, реверс, точная остановка с торможением ротора, отсутствие радиаторов, компактность и пр.) его просто не будет. Такое решение используется автором статьи в составе серийного изделия для управления движением платформы массой в 50 кг; приводной поворотный узел в сборе показан на Рисунке 12. Плата привода двигателя представлена на Рисунке 13.
Рисунок 13. | Плата привода. |
За рамками предлагаемой статьи остались вопросы, связанные с проблемой задания и поддержания некоторой определенной скорости вращения. Как отмечалось при рассмотрении регуляторов, скорость вращения двигателя в таких системах зависит от напряжения питания двигателя и его нагрузки. В отношении регуляторов на базе ШИМ существует заблуждение, что они более точны. Это далеко не так, поскольку их скорость зависит не только от скважности, но так же, как у аналоговых регуляторов, и от напряжения питания. В ряде случаев это может оказаться важным или определяющим фактором. Так недостаточная нагрузочная способность источника питания может не только изменить функцию регулирования (она станет нелинейной), но также ограничить момент и максимальную скорость вращения. Чтобы избежать такой ситуации, лучше не использовать питание непосредственно от выпрямителя, как это выполнено в [3] (см. Рисунок 4), а дополнить устройство эффективным стабилизатором.
Если стоит проблема не просто регулирования, а стабилизации скорости, то она решается при помощи сложных систем с контуром обратной связи (не по току!). Одним из элементов такой обратной связи являются датчики, дающие информацию о скорости вращения (таходатчики). Информация снимается или с вала ротора двигателя, или с конечного исполнительного механизма. Скорость стабилизируется либо путем использования фазовой автоматической подстройки частоты (ФАПЧ) вращения, либо традиционными для автоматики специальными регуляторами. Обычно используются пропорционально-интегрально-дифференциальные (ПИД) регуляторы, как более универсальные, или пропорционально-интегральные (ПИ), как более простые. В любом случае, оба эти решения достаточно сложны как для расчета, так и для исполнения, так как они привязаны не только к конкретному типу двигателя, но и ко всей системе привода в целом. Причем характеристики регулирования в таких системах определяются экспериментально. Ознакомиться с такими регуляторами можно во втором томе «настольной книги» каждого уважающего себя инженера [8]. Но все изложенное касается построения петли управления. А вот конечные каскады в таких системах аналогичны описанным выше. Используются либо аналоговые регуляторы, либо регуляторы с ШИМ.
В заключение необходимо напомнить, что все без исключения коллекторные двигатели являются источниками электромагнитных и радиопомех. В Интернете мало схем, в которых этому вопросу уделяется внимание. Поэтому при использовании коллекторных двигателей необходимо принимать специальные меры по выполнению требований по электромагнитной совместимости. При этом нужно иметь ввиду, что ШИМ-регуляторы проигрывают аналоговым. Для обеспечения должной электромагнитной совместимости необходимо выполнять ряд мер. А именно, правильно выбирать двигатели, не поддаваться искушению использовать дешевые поделки с медными, а не графитовыми щетками коллекторов. Советские коллекторные двигатели серий ДП(М) были и остаются в этом отношении далеко не худшими. Необходимо осуществлять правильную разводку печатной платы, использовать развязку земель и помехоподавляющие элементы, такие как низкоимпедансные электролитические конденсаторы (так называемые Low ESR), керамические конденсаторы и специальные помехоподавляющие фильтры, которые должны выбираться с учетом их работы без насыщения на выбранных максимальных токах. Обязательно шунтировать двигатели керамическими конденсаторами, размещая их непосредственно на выводах (лучше ламелях) двигателей.
Литература:
- Рентюк В. «Шаговые двигатели и особенности их применения». Компоненты и технологии, №10, 2013
- LM117/LM317A/LM317-N Three-Terminal Adjustable Regulator, Texas Instruments Inc., Jan. 2014
- talkingelectronics.com/EMR-2/SimplePWMThrottle.pdf
- BUZ11 N-Channel Power MOSFET 50V, 30A, 40 mΩ, Fairchild Semiconductor Corp., 2001
- Две схемы ШИМ регулятора на 12 вольт.
- ШИМ регулятор оборотов двигателя 12 вольт на таймере NE555.
- LMD18245 3A, 55V DMOS Full-Bridge Motor Driver, Texas Instruments Inc., April 2013.
- Титце У., Шенк К. «Полупроводниковая схемотехника» 12_е изд.: Пер. с нем. – М.: ДМК Пресс, 2007.