Altinkaya: турецкие корпуса для РЭА
РадиоЛоцман - Все об электронике

Популярно о USB. Часть 1

Немоляев А. В, г. Екатеринбург

Введение

У меня возникла необходимость разобраться с USB и, к своему удивлению, я обнаружил, что материалов по USB на русском языке не так уж много. Решил обобщить свой опыт изучения USB и передать всем желающим с ним познакомиться.

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Публикация адресована начинающим разработчикам, тем, кто не знаком с USB, но хотел бы узнать больше. Статья носит учебный характер, и не является исчерпывающим справочным пособием. Для более простого вхождения в тему примеры основаны на стандарте USB 1.1. Если не сказано отдельно, то подразумевается режим FS (Full speed). В статье нет широко освещенных в других источниках сведений об общей топологии USB, о кабелях, хабах и разъемах. Здесь больше информации о том, что нужно знать разработчику устройств с микроконтроллерами о протоколе USB для своих разработок. Для устройств USB подключаемых к PC, таких, как мышь, клавиатура, микроконтроллер с поддержкой шины USB, использую термин USB-устройство. Персональный компьютер, к которому подключается USB-устройство, называю хостом. Доступное изложение теории, будет сопровождаться примерами программ на языке С для микроконтроллера AT90USB162 из популярной линейки megaAVR фирмы Atmel. В качестве источника справочной информации по USB рекомендую книгу Гук М. Ю. «Шины PCI, USB и FireWire. Энциклопедия», издательство «Питер».

Обзор темы

Программное обеспечение хоста делится на два отдельных типа: программное обеспечение инициализации канала связи и программное обеспечение поддержки рабочего режима обмена данными. Программное обеспечение инициализации начинает работать при подключении к хосту нового USB-устройства. Происходит обмен служебной информацией между хостом и USB-устройством. В результате обменов служебной информацией, хост определяет: тип устройства, его требования к энергопотреблению, возможность поддержки «спящего режима», тип драйверов для правильной работы USB-устройства, и, даже, возможна ли загрузка необходимых прикладных программ для работы с USB-устройством. Это новые веяния в духе спецификации PNP (plug and play). Устройства могут подключаться и отключаться в горячем режиме. При подключении и отключении происходит автоматическое переконфигурирование программного обеспечения хоста. Процесс настройки хоста на обмен данными, напоминает процесс раскрутки. Первоначально обмениваются простейшими сигналами по шине, затем процесс усложняется и, наконец, выход на рабочий режим.

Программное обеспечение рабочего режима поддерживает обмен данными, когда хост соответственно сконфигурирован, и USB-устройство вышло на рабочий режим обмена. В спецификации USB этот начальный процесс называется энумерацией.

В последнее время имеется тенденция к унификации не только протоколов обмена, но и устройств, взаимодействующих с персональным компьютером. Точнее, унификация требований к каналу связи. Идея такая. Придумывается универсальная шина для всего, что только можно подключить. Конечно, эта шина устроена сложно, она многоуровневая, гибкая и адаптируемая для разных конфигураций устройств. Унифицируются и драйверы операционной системы персонального компьютера, который взаимодействует с подключаемым устройством. Преимущество – отпадает необходимость в написании драйвера для ОС разработчиками USB-устройства. Это должно повышать надежность ОС, так как созданием драйверов могут заняться разработчики ОС, а не разработчики устройств. В общем, все плюсы унификации и стандартизации. Но есть и минусы. Очевидная сложность и связанная с ней избыточность, громоздкость технических решений. Тот же подход, что и в протоколах коммуникаций на большие расстояния. Академический стек протоколов OSI и знаменитый TCP/IP.

В связи с вышесказанным, в спецификации USB вводится понятие класса устройств. Все электронные устройства, подключаемые к персональному компьютеру, по своим функциональным качествам очень схожи. Например, звуковые платы предоставляют сервис приблизительно одного уровня. Поэтому устройства стали делить на унифицированные классы. Класс – это группа устройств, объединенных общими характеристиками и способных управляться общим для них программным драйвером операционной системы. Отдельное устройство может объединять функциональность сразу нескольких устройств, принадлежащих к разным классам. Если функциональность вашего устройства подходит к некоторому классу, и оно поддерживает спецификацию USB для устройств класса, то не нужно писать драйвер для ОС. Вероятнее всего, драйвер уже имеется в ОС. Функциональность устройства, подпадающего под определенный класс, может быть расширена разработчиком устройства добавлением отдельных команд. Точнее говоря, в стандарте USB предусмотрена возможность некоторого расширения функциональности. В стандарте предусмотрено множество возможностей, которые разработчик устройства может использовать для своих целей, добавляя к базовой функциональности функциональность расширенную. В спецификации USB есть две большие области, это собственно USB базового уровня и протоколы устройств классов. Протоколы устройств классов – это некоторая надстройка над протоколами нижнего уровня. Логично сначала разобраться с базовыми принципами, а уж потом со всем остальным.

Виртуальные каналы и конечные точки

Все примеры в статье даются в среде операционной системы Linux. По моему субъективному мнению, для новичка разобраться в реализации USB для Windows труднее, чем для Linux. Приходится много перерабатывать информации, специфичной для Windows, и ни как не относящейся к стандарту USB. В Linux к пониманию существа дела можно добраться более коротким путем. Разобравшись с Linux, можно легко перейти и к Windows.

В режиме передачи данных, когда процесс конфигурирования (энумерации) уже закончился, между USB-устройством и хостом должны быть налажены мосты. Это некий набор виртуальных каналов, по которым идет обмен данными и служебной информацией. Англоязычный термин pipe – труба. Каналы разделяют единственную среду передачи, а потому они являются мультиплексированными и, соответственно, виртуальными. Можно провести аналогию с локальной сетью. Шина Ethernet одна, но соединений TCP может быть несколько. Но в TCP/IP соединения TCP могут возникать и завершаться много раз в процессе работы. В USB типы каналов и их количество фиксируются на стадии процесса энумерации.

В стандарте определяются четыре типа каналов: управляющие, по прерыванию, массивов данных и изохронные. Только управляющий канал является двунаправленным, остальные каналы могут быть только однонаправленными. Для двустороннего обмена требуется организация хотя бы трех каналов. Обязательный управляющий канал и по одному для каждого направления. В USB принято, что канал называется каналом ввода, если данные передаются в хост, и канал вывода, если из хоста. Применяя специальные приемы, можно использовать канал управления для передачи небольших объемов данных. Но это нестандартное использование канала, и применяется редко. Напоминаем, что все информационные обмены на шине, для всех видов каналов происходят под управлением хоста. Первым делом хост посылает запрос, а затем USB-устройство отвечает.

Управляющий канал используется для передачи команд протокола USB; передача данных с использованием канала управления не является стандартным использованием канала. Хотя можно приспособить канал управления для передачи данных прикладной программы. В каждом USB-устройстве должен быть хотя бы один управляющий канал.

Канал передачи по прерыванию используется для небольших объемов данных, но с гарантированными задержками. Хост опрашивает USB-устройство на предмет готовности порции данных, и если USB-устройство готово для обмена, то обмен происходит. Время реакции USB-устройства задается при конфигурировании и лежит в диапазоне от 1 до 255 мс. Так что, это не связано напрямую с прерываниями в общепринятом понимании. Один канал по прерыванию типа ввода, используется мышью USB (Рисунок 1). По каналу передаются клики и координаты указателя. В моей клавиатуре USB используются два канала по прерыванию и один канал управления.

Популярно о USB

Рисунок 1.

Изохронные каналы – применяются для передачи потока данных, например аудио и видео. Характерной особенностью является отсутствие повторной передачи данных в случае ошибок. Поврежденные пакеты просто отбрасываются без запроса повторной передачи. Такая политика позволяет воспроизводить поток данных в реальном времени без временных задержек. С периодом в 1 миллисекунду хост запрашивает данные, и буфер USB-устройства передается на хост. В веб-камерах используются изохронные каналы.

Канал передачи массивов данных используется в типах устройств, не требующих временной привязки при передаче данных и оперативной реакции на внешние события. Принципиальное отличие от двух предыдущих типов каналов заключается в том, что временной интервал, по истечении которого данные будут доставлены, не гарантирован. В изохронном канале хост опрашивает устройство с периодичностью 1 мс. В канале передачи по прерыванию хост может опрашивать USB-устройство с периодом от 1 до 255 миллисекунд. В канале передачи массивов хост начинает запрашивать данные для приема в свободное от всех остальных передач время. В случае искажения данных при передаче происходит повторная передача искаженных данных. В моей флэшке используются два канала передачи массивов данных: один на передачу и один на прием, не считая канала управления.

У USB-устройства приемником и передатчиком данных служит буфер, который называется конечной точкой. Тип конечной точки определяет тип канала, который связывает ее с хостом. Например, контроллер USB микроконтроллера AT90USB162 фирмы Atmel имеет в общей сложности 4 конечных точки, не считая конечной точки управления (из 4 возможных буферов обмена). Программа микроконтроллера должна, соответственно, сконфигурировать необходимое количество конечных точек для своих нужд. Все конечные точки контроллера USB перенумерованы. Нулевая конечная точка всегда используется для нужд канала управления и не может быть переконфигурирована для других целей. Если не создается драйвер ОС, то на стороне хоста расположение буфера знать необязательно, так как взаимодействие программы на стороне хоста с USB-устройством происходит через системные вызовы операционной системы и скрыто от пользовательской программы.

Хабы, адреса, хост контроллеры

Кратко опишем аппаратуру хоста. На стороне хоста обязательно должен присутствовать хотя бы один контроллер хоста и связанный с этим контроллером корневой хаб. В современных PC имеется несколько контроллеров хоста и, соответственно, несколько корневых хабов. Основателем каждой шины USB является корневой хаб, поэтому, если на PC несколько корневых хабов, то и несколько шин. В Linux имеющиеся шины USB можно посмотреть с помощью команды lsusb. Ниже приведен дамп вывода на моем компьютере:

alex@big:~$ sudo lsusb
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 004 Device 002: ID 1a2c:0021
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 003 Device 002: ID 0458:003a KYE Systems Corp. (Mouse Systems)
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 003: ID 13fe:4100 Kingston Technology Company Inc.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

В колонке слева перенумерованы имеющиеся в компьютере шины USB, а, значит, и контроллеры хабов и корневые хабы. Каждое USB-устройство на шине имеет уникальный адрес в диапазоне от 1 до 127. Нулевой адрес выполняет служебные функции, и не может быть назначен USB-устройству постоянно. Адреса распределяются по USB-устройствам хостом в процессе энумерации и сохраняются на все время работы устройства на шине. Из работы программы lsusb видно, что мышь USB подключена к шине 03, и на этой шине ей назначен адрес 02. Устройство хранения данных подключено к шине 01 с адресом 03. Можно поиграть, поменять последовательность включения и посмотреть, как это отразится на выводе lsusb. В следующей колонке указан идентификационный код устройства ID. Этот код состоит из 2 частей: идентификатора изготовителя (vendor ID) и идентификатора изделия (product ID). Они представляют собой два уникальных числа, используемых для идентификации конкретного устройства. Операционная система по этим кодам может определять, какой драйвер требуется загрузить для работы. Значение кода изготовителя назначается форумом разработчиков USB по заказу фирмы. Код устройства устанавливает сам производитель. Программист микроконтроллеров может задать эти числа произвольно. Другое дело, что такие устройства, поступившие в широкую продажу, могут вызвать возражения фирмы собственника кода. Кроме этих чисел, для идентификации можно использовать номер версии устройства (ID Device).

Часть 2

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя