KEEN SIDE успешно заменяет аналогичные продукты таких известных брендов, как Phoenix Contact, Weidmueller, Degson, Winstar, Hsuan Mao, KLS, G-NOR, Mean Well и др.

Светодинамическое устройство «бегущая волна». Часть 1 - Общие сведения

Одинец Александр Леонидович, г. Минск, Беларусь

E-mail: [email protected]

Аннотация

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Светодинамические устройства (СДУ) с программируемыми алгоритмами позволяют создавать большое многообразие светодинамических эффектов и управлять по программе большим числом световых элементов. СДУ с линейным (плавным) управлением яркостью, в отличие от СДУ с дискретным управлением яркостью, требуют применения отдельного аппаратного ШИМ-контроллера на каждый канал. Поэтому сложность такого устройства возрастает пропорционально числу световых элементов. В данной статье рассматривается 16-канальный вариант СДУ с плавным управлением яркостью, сочетающий в себе простоту схемотехнических решений и программно реализованную эмуляцию 16-ти аппаратных ШИМ-контроллеров.

Общие сведения

Одновременное синхронное управление яркостью большого числа световых элементов по линейному закону требует не только применения отдельного аппаратного ШИМ-контроллера на каждый канал, но и синхронизации работы таких контроллеров с определенным фазовым сдвигом между каналами. Предлагаемое устройство базируется на архитектуре программируемого 16-канального контроллера с последовательным интерфейсом, рассмотренной в [1]. Отличия заключаются в алгоритме чтения и прошивке ИМС ЭСППЗУ, а также применении более сложных выходных регистров типа 74AC595. Данный регистр состоит из 16-ти триггерных ячеек, первые восемь из которых входят в состав буферного регистра, а остальные восемь – в состав выходного. Применение последовательного интерфейса позволяет наращивать число световых элементов с минимальными аппаратными затратами без существенного усложнения схемотехнической части основного контроллера, а также управлять одновременно и синхронно несколькими наборами световых элементов по линиям последовательного интерфейса, длина которых может достигать 100 м. В простейшем случае СДУ реализует два световых эффекта типа «бегущая волна» с длиной слова ШИМ-последовательности равной 16 бит. Эффекты сменяются в автоматическом режиме после четырехкратного повторения или выбираются вручную нажатием кнопки. С увеличением объема памяти используемой ИМС ЭСППЗУ возможно увеличение числа каналов, количества эффектов, а также длины слова ШИМ-последовательности.

Светодинамическое устройство «бегущая волна» 
Рисунок. 1. Типичные ШИМ-последовательности

Для плавного управления яркостью в данном устройстве использован принцип широтно-импульсной модуляции (ШИМ). ШИМ – это способ кодирования цифрового сигнала путем изменения длительности (ширины) прямоугольных импульсов несущей частоты. На Рис. 1 представлены типичные графики ШИМ сигнала. Поскольку при широтно-импульсной модуляции частота импульсов, а значит, и период (T), остаются неизменными, то при уменьшении длительности импульса (t) увеличивается пауза между импульсами (эпюра «Б» на Рис. 1) и, наоборот, при увеличении длительности импульса пауза уменьшается (эпюра «В» на Рис. 1). В нашем случае включению светодиода соответствует появление на выходе регистра уровня логического нуля, поэтому яркость возрастает с увеличением скважности импульсов (эпюра «Б» на Рис. 1), и, наоборот, яркость уменьшается с уменьшением скважности (эпюра «В» на Рис. 1). Напомним, что скважностью импульсов называется отношение периода следования импульсов к их длительности. Скважность – безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах.

В данном устройстве используется 16-битная длина слова ШИМ-последовательности, что соответствует 16-ти градациям яркости световых элементов. Такого числа градаций яркости вполне достаточно для визуально плавного изменения яркости при периоде нарастания и спада «бегущей волны» не превышающем одной секунды. С увеличением периода изменения яркости до двух-трех секунд переходы между уровнями яркости (градации) становятся визуально заметными, что потребует увеличения длины слова ШИМ-последовательности. Но для большинства применений, если не требуется очень медленного воспроизведения эффекта, вполне достаточно и 16-ти градаций яркости.

Для управления удаленным набором световых элементов используются три сигнальные линии последовательного интерфейса: «Data», «Clk1» и «Clk2». Первая линия «Data» – это информационный сигнал, а две другие линии – «Clk1» и «Clk2» – это сигналы стробирования буферных и выходных регистров, соответственно, входящих в состав ИМС 74AC595.

При работе на длинные несогласованные линии связи возникают проблемы передачи данных, связанные с хорошо известными отражениями сигналов и перекрестными помехами, наводимыми смежными проводниками, входящими в один жгут. Подобные отражения и помехи, возникающие в светодинамической системе, означают нарушение эстетического эффекта. Это накладывает ограничения на длину соединительной линии и предъявляет жесткие требования к помехоустойчивости системы, использующей последовательный интерфейс.

Помехоустойчивость такой системы зависит от многих факторов: частоты и формы импульсов транслируемого сигнала, времени между изменениями уровней (скважности) импульсов, удельной емкости проводников линии, входящих в жгут, эквивалентного сопротивления линии, а также входного сопротивления приемников сигнала и выходного сопротивления драйверов.

Эффекты влияния длинных несогласованных линий начинают проявляться, когда времена задержек распространения сигнала вдоль линии и обратно начинают превосходить длительность фронтов нарастания и спада сигнала. Любые несоответствия между эквивалентным сопротивлением линии и входным сопротивлением логического элемента на приемной стороне линии или выходного сопротивления драйвера на передающей стороне приводят к многократному отражению сигнала. Типовое значение времен нарастания и спада фронтов сигнала для микросхем серии КР1554 составляет менее 5 нс, поэтому эффекты влияния длинных несогласованных линий начинают проявляться при ее длине всего пятьдесят-шестьдесят сантиметров.

Зная характеристики линии передачи, такие как полная входная емкость и удельная емкость на единицу длины, можно вычислить время задержки распространения сигнала по всей длине линии. Типовое значение времени задержки распространения сигнала обычно составляет 5-10 нс/м. Если длина соединительной линии достаточно велика и длительность фронтов нарастания и спада сигнала достаточно мала, несоответствие эквивалентного сопротивления линии и входного сопротивления логического КМОП элемента на приемной стороне создает отражение сигнала, амплитуда которого зависит от мгновенного значения напряжения, приложенного ко входу элемента, и коэффициента отражения, который, в свою очередь, зависит от эквивалентного сопротивления линии и входного сопротивления входного логического элемента.

Поскольку входное сопротивление элементов ИМС серии КР1554 многократно превосходит эквивалентное сопротивление линии, выполненной витой парой или экранированным проводником, отраженное напряжение на входе приемника удваивается. Этот отраженный сигнал распространяется вдоль линии обратно к передатчику, где он вновь отражается, и процесс повторяется до полного затухания сигнала.

Особо подчеркнем, что отражения никак не связаны с частотой импульсов транслируемого сигнала, а вызваны только большой крутизной фронтов транслируемых синхроимпульсов. Для борьбы с отражениями в профессиональной схемотехнике, при работе на линии большой длины (100 м и более), используют специальные драйверы, уменьшающие крутизну фронтов транслируемых синхроимпульсов, и, тем самым, исключающие ошибки передачи данных.

Для работы на линии относительно небольшой длины (от 10 до 100 м) вполне подходят ИМС стандартной логики серии КР1554 (74ACxx). Благодаря их высокой нагрузочной способности возможно непосредственное управление нагрузкой, имеющей емкостной характер. Сбалансированные (симметричные) вольтамперные выходные (передаточные) характеристики элементов этих микросхем позволяют получить практически одинаковые времена фронтов нарастания и спада сигнала. Кроме того, для трансляции сигналов в линию и приема можно использовать мощные буферные элементы на основе триггеров Шмитта, обладающие гистерезисом, минимальное значение которого составляет около 0.9 В при напряжении питания 4.5 В, что создает дополнительный запас помехоустойчивости.
Для компенсации отраженного сигнала в данном устройстве используются так называемые интеграторы или интегрирующие RC-цепочки. Необходимость в них возникает только при работе на линии длиной более 10 м в условиях повышенного уровня помех. В авторском варианте устройства на линиях длиной до 10 м конденсаторы, показанные на схемах выходных регистров штриховыми линиями, не использовались. Линия связи при длине до 10 м выполняется жгутом из 5 проводников, включая «Питание «+12В»» и «Общий провод». При этом никаких сбоев не наблюдается, даже без интегрирующих конденсаторов. При длине сигнальной линии от 10 до 100 м возрастают перекрестные помехи, наводимые смежными проводниками. В таком случае каждую сигнальную линию: «Data», «Clk1» и «Clk2» необходимо выполнить отдельной витой парой, а на платах выходных регистров установить конденсаторы, показанные на схеме штриховыми линиями. В таком случае, удаленные регистры и гирлянды запитываются от отдельного источника питания напряжением «+12В».

Окончание читайте здесь

Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя