HRP-N3 - серия источников питания с максимальной пиковой мощностью в 350% от MEAN WELL

Регулятор частоты вращения вала мини дрели «HAMMER» MD050B с эффектом стабилизации механического момента на валу

- Рязань

Полировка блесен занятие – утомительное, но очень увлекательное. Для механизации процесса предполагалось использовать мини дрели «HAMMER» MD050B с набором приспособлений, штатным источником питания 12 В/0.4 А и порошок для полировки. Но при первой же попытке порошок разлетелся. Фетровая насадка при 15000 оборотов в минуту вала дрели все разбросала. Регулировка скорости вращения за счет уменьшение напряжения питания дрели нужного результата не дала. Вал просто останавливался при соприкосновении насадки с блесной.

Выбираем схему BMS для заряда литий-железофосфатных (LiFePO4) аккумуляторов

Стало ясно, что для продолжения необходимо устройство, позволяющее регулировать частоту вращения вала, но обязательно с эффектом стабилизации механического момента.

Просмотр просторов Интернета обнаружил некоторые предложения (см., например, [1], [2]). В основном эти решения базируются на модели двигателя постоянного тока. Эта модель представляет собой последовательное соединение резистора, величина которого равна омическому сопротивлению ротора двигателя (измеряется обычным тестером), и источника ЭДС, E = f(ω). Величина ЭДС пропорциональна частоте вращения и имеет полярность, противоположную источнику питания. На схеме ЭДС обозначена буквой E, а модель двигателя постоянного тока нарисована справа от изображения двигателя. Понятно, что если удастся поддерживать ЭДС постоянной, то и скорость вращения вала меняться не будет.

Для решения проблемы необходимо выделить ЭДС в «чистом виде» и научиться использовать ее для стабилизации момента на валу. Возможны разные способы выделения ЭДС из полного падения напряжения на двигателе. Например, включение последовательно с двигателем резистора, по величине равного омическому сопротивлению якоря [1]. Такой вариант ведет к дополнительным потерям мощности на этом резисторе, сравнимым с мощностью на двигателе. Ну и сама схема дальнейшей обработки, выполненная на операционном усилителе, не очень доступна для понимания.

Существует простой способ получения тока, равного заданному, с использованием токового зеркала. На схеме Рисунок 1 токовое зеркало выполнено на транзисторах VT3 и VT4. В случае, если сопротивление резистора в цепи эмиттера VT3 равно нулю, токи VT3 и VT4 равны. И, если теперь из напряжения на двигателе Ua вычесть произведение тока двигателя на величину резистора R2, равную сопротивлению якоря (которое для двигателя мини дрели составляет около 3 Ом), то получим величину напряжения, равного ЭДС. Все это верно. Но в этом случае мощность, выделяемая на R2, соизмерима с мощностью, выделяемой на двигателе.

Принципиальная схема регулятора частоты вращения вала мини дрели.
Рисунок 1. Принципиальная схема регулятора частоты вращения вала мини дрели.

Однако пропорциональная зависимость токов коллекторов VT3 и VT4 сохранится и при уменьшении тока VT3 за счет установленного в эмиттерную цепь VT3 резистора R5 [3]. Опытным путем установлено, что при R5 = 6.0 Ом отношение тока VT4 к току VT3 равно примерно 10. И, следовательно, для получения падения напряжения на R2, равного падению на якоре двигателя, необходимо увеличить R2 в 10 раз, то есть выбрать 30 Ом.

Приравнивая правые части и решая при условии

и

получаем

где

Ua – напряжение в точке «a» на схеме, то есть, напряжение питания двигателя;
RЯ – омическое сопротивление якоря,
IK4 – коллекторный ток транзистора VT4,
IK3 – коллекторный ток транзистора VT3,

То есть, напряжение Uв равно (или менее строго – пропорционально) ЕДС двигателя. То, что равенство не строгое, для стабилизации момента и частоты вращения ротора двигателя значения не имеет.

Таким образом, напряжение в точке «в» повторяет ЭДС двигателя дрели, и эту величину далее используем для поддержания момента на валу.

Это происходит так. При увеличении нагрузки на вале двигателя (вал с фетровой насадкой прижимается к блесне) частота вращения падает и уменьшается величина ЭДС и, следовательно, напряжение в точке «в». Это приведет к уменьшению напряжения снимаемого с движка резистора R3 ниже напряжения опоры в DA1, TL431. Микросхема начнет закрываться, напряжение на катоде возрастет, транзисторы VT2 и VT1 приоткроются. Это приведет к увеличению напряжения в точке «а», то есть на двигателе, и частота вращении повысится. Таким образом, увеличение нагрузки на валу не приведет к уменьшению частоты, схема отработает увеличение нагрузки и восстановит прежнюю частоту вращения.

Конденсаторы С2 и С3 служат для предотвращения возбуждения на низкой скорости вращения.

В схеме можно использовать любые транзисторы, проходящие по допустимому току и напряжению. Транзисторы VT3 и VT4 должны быть одного типа и желательно из одной партии или хотя бы одновременно приобретенными. При кратковременно-повторном режиме работы дрели транзистор VT1 достаточно установить на радиатор, способный рассеивать мощность около 5 Вт. Конденсатор С1 фильтрующий. Достаточно несколько десятков микрофарад. Желательно параллельно установить еще один, не электролитический, например, 10 нФ. Диод VD1 защищает от переполюсовки и должен выдерживать ток 5 А, VD2 убирает помехи двигателя.

Штатный источник питания дрели рассчитан на ток 0.4 А. Этого достаточно только для раскрутки на холостом ходу. Для ощутимого эффекта стабилизации механического момента на валу необходим источник питания 14 В/2.5 А.

ВНИМАНИЕ!

Использование регулятора может привести к сокращению ресурса дрели.

Макет регулятора инструментальными методами не проверялся. Все проверки выполнялись на «слух и на ощупь». Пределы регулировки скорости вращения и стабилизация момента оказались достаточными для использования.

Литература

  1. Журнал «Радио» №7, 1988 г., стр. 32.
  2. Схема стабилизации скорости вращения двигателя постоянного тока
Электронные компоненты. Бесплатная доставка по России
Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Имя