Shawn Rhen
Digi-Key
Достижения в сфере производства мощных светодиодов привлекли внимание индустрии светотехники. Мощные светодиоды позиционируются как замена современных ламп накаливания и люминесцентных ламп. Несмотря на то, что по настоящему широкого распространения светодиоды пока не получили, они обладают целым рядом характеристик, с которыми существующие технологии освещения конкурировать не в состоянии.
Одной из важных особенностей светодиодов является способность создавать многоцветный световой поток для акцентирующего освещения, автомобильных и рекламных приложений. На этом аспекте мощных RGB светодиодов мы и остановимся.
Первый критерий проекта, который необходимо выполнить для того, чтобы воспроизвести однородные и повторяющиеся цвета – это обеспечение постоянного тока через каждый кристалл RGB светодиода. Как показано на Рисунке 1, это можно сделать с помощью мощных драйверов CAT4101, способных отдавать регулируемый подстроечными резисторами ток до 1 А, при питании светодиодов постоянным напряжением 5 В.
![]() |
|
Рисунок 1. | Схема драйвера со стабилизацией тока. |
Схема позволяет индивидуально устанавливать ток через каждый элемент RGB светодиода в диапазоне примерно от 100 мА до 1 А, при условии, что напряжение питания хотя бы на 500 мВ превышает прямое напряжение кристаллов. В то же время, поскольку драйверы имеют характеристики сходные с характеристиками линейного регулятора, напряжение питания анодов светодиодов должно быть достаточно близким к прямому напряжению светодиодов, чтобы избежать рассеивания драйверами избыточной энергии.
Ток, проходящий через резисторы-датчики тока, усиливается внутренним усилителем драйвера CAT4101, имеющим коэффициент усиления около 400. Поскольку этот ток сравнительно невелик, мощность резисторов должна быть совсем небольшой, и, при желании, их даже можно заменить цифровыми потенциометрами.
Рассматриваемая схема хорошо подходит для тестирования отдельных RGB светодиодов, чтобы определить ток, требуемый каждому кристаллу для получения желаемого цвета. Кроме того, она позволяет проводить температурные испытания, и может использоваться как средство сравнения RGB светодиодов различных производителей при одинаковых условиях.
Однако ручная регулировка потенциометров кажется слишком архаичной. Для большего удобства схему можно дополнить микроконтроллером, который будет формировать ШИМ сигналы на выводах управления каждого драйвера (Рисунок 2).
![]() |
|
Рисунок 2. | Микроконтроллер формирует сигналы ШИМ для драйверов светодиодов. |
Подключение микроконтроллера позволит добавить различные функции управления за счет использования встроенного USART. Появится возможность с помощью практически любого устройства с коммуникационным интерфейсом RS-232 индивидуально управлять интенсивностью красного, зеленого и синего кристаллов путем изменения коэффициентов заполнения сигналов ШИМ.
Для эффективного управления по интерфейсу RS-232 необходимо, прежде всего, установить такой ток для каждого RGB кристалла, чтобы получить результирующий белый цвет свечения. С этой целью входы Enable драйверов следует подключить к высокому уровню, чем будет задан коэффициент заполнения 100%, и вручную подстроить токи через кристаллы с помощью потенциометров.
Токи кристаллов должны быть установлены на максимальные требуемые приложением уровни (до 1 А), при которых еще возможно получить в достаточной степени чистый белый цвет свечения. После того, как токи выставлены, управление коэффициентами заполнения на выходах ШИМ микроконтроллера будет вызывать относительное изменение светового потока каждого кристалла, результатом чего станет формирование необходимого цвета.
Команды управления коэффициентом заполнения ШИМ принимаются модулем UART микроконтроллера от устройства с интерфейсом RS-232. Такими устройствами могут быть последовательный порт персонального компьютера, конвертер USB-RS-232 (виртуальный COM-порт) или беспроводной модуль, использующий протоколы ZigBee или Bluetooth.
![]() |
|
Рисунок 3. | Пример беспроводной коммуникации. |
В то время как последовательные и USB порты хорошо подходят для проводных приложений, беспроводные модули могут обеспечить удаленное управление. В примере приложения, изображенном на Рисунке 3, для беспроводной коммуникации со схемой управления цветом RGB светодиода используются шлюз ZigBee-Ethernet и модуль ZigBee.
![]() |
![]() |
||
Управление установленным на плате RGB светодиодом посредством ZigBee модуля | Управление внешней RGB светодиодной лампой посредством ZigBee модуля | ||
![]() |
![]() |
||
Управление установленным на плате RGB светодиодом посредством Bluetooth модуля | Графический интерфейс управления RGB светодиодом по протоколу Bluetooth |
Интернет-соединение позволяет удаленно управлять цветовой гаммой RGB светодиода через такие устройства доступа к сети Интернет, как компьютеры или сотовые телефоны. Поскольку схема управления основана на интерфейсе RS-232, модуль ZigBee может быть заменен на Bluetooth модуль, если последний поддерживает профиль последовательного порта (SSP). Это даст возможность организовать связь и управление на коротких и средних расстояниях с любого устройства, поддерживающего протокол Bluetooth.